Sanger et al. Journal of Trust Management (2015) 2:5 .
DOI 10.1186/540493-015-0015-3 0 Journal Of TrUSt Management
a SpringerOpen Journal

RESEARCH Open Access

Reusable components for online reputation
systems

Johannes Sénger’, Christian Richthammer and Giinther Pernul

*Correspondence:
johannes.saenger@wiwi. Abstract

bzii;rggiszbf“égéd;sburg Reputation systems have been extensively explored in various disciplines and
Universitatsstrale 31, 93053 application areas. A problem in this context is that the computation engines applied by
Regensburg, Germany most reputation systems available are designed from scratch and rarely consider well
established concepts and achievements made by others. Thus, approved models and
promising approaches may get lost in the shuffle. In this work, we aim to foster reuse in
respect of trust and reputation systems by providing a hierarchical component
taxonomy of computation engines which serves as a natural framework for the design
of new reputation systems. In order to assist the design process we, furthermore,
provide a component repository that contains design knowledge on both a
conceptual and an implementation level. To evaluate our approach we conduct a
descriptive scenario-based analysis which shows that it has an obvious utility from a
practical point of view. Matching the identified components and the properties of trust
introduced in literature, we finally show which properties of trust are widely covered by
common models and which aspects have only rarely been considered so far.

Keywords: Trust; Reputation; Reusability; Trust pattern

Introduction
In the last decade, trust and reputation have been extensively explored in various disci-
plines and application areas. Thereby, a wide range of metrics and computation methods
for reputation-based trust has been proposed. While most common systems have been
introduced in e-commerce, such as eBay’s reputation system [1] that allows to rate sell-
ers and buyers, considerable research has also been done in the context of peer-to-peer
networks, mobile ad hoc networks, social networks or ensuring data accuracy, relevance
and quality in several environments [2]. Computation methods applied range from sim-
ple arithmetic over statistical approaches up to graph-based models involving multiple
factors such as context information, propagation or personal preferences. A general prob-
lem is that most of the newly introduced trust and reputation models use computation
methods that are designed from scratch and rely on one novel idea which could lead to
better solutions [3]. Only a few authors build on proposals of others. Therefore, approved
models and promising approaches may get lost in the shuffle.

In this work, we aim to encourage reuse in the development of reputation systems by
providing a framework for creating reputation systems based on reusable components.
Design approaches for reuse have been given much attention in the software engineering

© 2015 Sanger et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly credited.

mailto: johannes.saenger@wiwi.uni-regensburg.de
mailto: johannes.saenger@wiwi.uni-regensburg.de
http://creativecommons.org/licenses/by/4.0

Sanger et al. Journal of Trust Management (2015) 2:5 Page 2 of 21

community. The research in trust and reputation systems could also profit from ben-
efits like effective use of specialists, accelerated development and increased reliability.
Toward this goal, we propose a hierarchical taxonomy for components of computation
engines used in reputation systems. Thereto, we decompose the computation phase of
common reputation models to derive single building blocks. The classification based on
their functions serves as a natural framework for the design of new reputation systems.
Moreover, we set up a component repository containing artifacts on both a conceptual
and an implementation level to facilitate the reuse of the identified components. On the
conceptual level, we describe each building block as a design pattern-like solution. On
the implementation level, we provide already implemented components by means of web
services.

The rest of this paper is based on the design science research paradigm involving the
guidelines for conducting design science research by Hevner et al. [4] and organized as
follows: Firstly, we give an overview of the general problem context as well as the relevance
and motivation of our work. Thereby, we identify the research gap and define the objec-
tives of our research. In the following section, we introduce our hierarchical component
taxonomy of computation engines used in reputation systems. After that, we point out
how our component repository is conceptually designed and implemented. Subsequently,
we carry out a descriptive scenario-based analysis of our approach. At the same time, we
match all components identified with the properties of trust introduced in literature. We
show which properties of trust are widely covered by common models and which aspects
have only rarely been considered so far. Finally, we summarize the contribution and name
our plans for future work.

Problem context and motivation

With the success of the Internet and the increasing distribution and connectivity, trust
and reputation systems have become important artifacts to support decision making in
network environments. To impart a common understanding, we firstly provide a defi-
nition of the notion of trust. At the same time, we explain the properties of trust that
are important with regard to this work. Then, we point out how trust can be established
applying computational trust models. Focusing on reputation-based trust, we explain how
and why the research in reputation models could profit from reuse. Thereby, we identify
the research gap and define the objectives of this work.

The notion of trust and its properties

The notion of trust is a topic that has been discussed in research for decades. Although
it has been intensively examined in various fields, it still lacks a uniform and generally
accepted definition. Reasons for this circumstance are the multifaceted terms trust is
associated with like credibility, reliability or confidence as well as the multidimension-
ality of trust as an abstract concept that has a cognitive, an emotional and a behavioral
dimension. As pointed out by [5], trust has been described as being structural in
nature by sociologists while psychologists viewed trust as an interpersonal phenomenon.
Economists, however, interpreted trust as a rational choice mechanism. The definition
often cited in literature regarding trust and reputation online that is referred to as relia-
bility trust was proposed by Gambetta in 1988 [6]: “Trust (or, symmetrically, distrust) is
a particular level of the subjective probability with which an agent assesses that another

Sanger et al. Journal of Trust Management (2015) 2:5 Page 3 of 21

agent or group of agents will perform a particular action, both before he can monitor such
action (or independently of his capacity ever to be able to monitor it) and in a context in
which it affects his own action.”

Multiple authors furthermore include security and risk which can lead to more com-
plex definitions. Anyway, it is generally agreed that trust is multifaceted and dependent
on a variety of factors. Moreover, there are several properties of trust described in lit-
erature (see Table 1). These properties are important with respect to this work because
they form the basis for many applied computation techniques in trust and reputation
systems described in Section ‘Hierarchical component taxonomy. Reusable components
could extend current models by the ability to gradually include these properties.

Reputation-based trust
In recent years, several trust models have been developed to establish trust. Thereby,

two common ways can be distinguished, namely policy-based and reputation-based trust

Table 1 Overview of properties of trust described in literature [14,41-46]

Dynamic Trust can increase or decrease through gathering new experiences. Moreover,
trust is said to decay with time (time-based aging [45]). Because of these char-
acteristics, trust values strongly depend on the time they are determined. The
greater importance of new experiences compared to old experiences has been
widely studied and considered in many trust models such as [32,47] or [30].

Context-dependent Trust is bound to a specific context. For example, Alice trusts Bob as her doctor.
However, she might not trust him as a cook to prepare a delicious meal for her.

Multi-faceted Even in the same context, a trust value may not reflect all aspects of this context
[43]. For example, a customer may trust a particular restaurant for its quality of
food but not for its quality of service. The overall trust on this restaurant depends
on the combination of the amount of trust in the specific aspects.

Propagative One property of trust made use of in several models is its propagativity. If Alice
trusts Bob, who in turn trusts Claire, Alice can derive trust on Claire from the rela-
tionships between her and Bob as well as between Bob and Claire. Because of
this propagative nature, it is possible to create trust chains passing trust from
one agent to another agent. As clarified by Christianson and Harbison [48], trust
is not automatically transitive although trust transitivity was assumed proven for
a long time. If Alice trusts Bob, who in turn trusts Claire, it does not inherently
mean that Alice trusts Claire. It follows from the foregoing that transitivity implies
propagation. The reverse, though, is not the case.

Composable When trust is propagated, a particular agent may be connected to multiple
trust chains. To come up with a final decision whether to trust or distrust this
agent, the trust information received from the different chains need to be com-
posed in order to build one aggregated picture. In this context, trust statements
propagated from nodes close to oneself should have greater influence on the
aggregated value than the ones from distant nodes (distance-based aging [45]).
Composition is potentially difficult if the trust statements are contradictory [14].

Subjective The subjective nature of trust becomes clear if one thinks about a review on Ama-
zon [26]. A book review that totally reflects Alice’s opinion will probably resolve
in a high level of trust against the reviewer Rachel. Bob, however, who disagrees
with the review, will have a lower trust in Rachel although it bases on the same
evidence.

Fine-grained Although trust is sometimes modeled in a binary manner (i.e. either trust or dis-
trust), it is possible that Alice trusts both Bob and Claire but that she trusts Bob
more than Claire. Hence, there may be multiple discrete levels of trust such as
high, medium and low [41]. Mapped to numbers, trust may also be a continuous
variable taking values within a certain interval (e.g. between 0 and 1).

Event-sensitive It can take a long time to build trust. One negative experience, though, can
destroy it [23].

Reflexive Trust in oneself is always at the maximum value.

Self-reinforcing It is human nature to preferentially interact with other agents that are trusted.

Analogously, agents will avoid interacting with untrustworthy agents. Thus, the
trustworthiness of other agents is inherently taken into consideration.

Sanger et al. Journal of Trust Management (2015) 2:5 Page 4 of 21

establishment [7]. Policy-based trust is often referred to as a hard security mechanism due
to the exchange of hard evidence (e.g. credentials). Reputation-based trust, in contrast, is
derived from the history of interactions. Hence, it can be seen as an estimation of trust-
worthiness (soft security). In this work, we focus on reputation-based trust. Reputation
is defined as follows: “Reputation is what is generally said or believed about a person’s or
thing’s character or standing.” [8].

It is based on referrals, ratings or reviews from members of a community. Therefore,
it can be considered as a collective measure of trustworthiness [8]. Trustworthiness as a
global value is objective. However, the trust an agent puts in someone or something as a
combination of personal experience and referrals is subjective.

Research gap: design of reputation systems with reuse

It has been argued (e.g. by [3]) that most reputation-based trust models proposed in the
academic community are built from scratch and do not rely on existing approaches. Only
a few authors continue their research on the ideas of others. Thus, many approved models
and promising thoughts go unregarded. The benefits of reuse, though, have been rec-
ognized in software engineering for years. However, there are only very few works that
proposed single components to enhance existing approaches. Rehak et al. [9], for instance,
introduced a generic mechanism that can be combined with existing trust models to
extend their capabilities by efficiently modeling context. The benefits of such a compo-
nent that can easily be combined with existing systems are obvious. Nonetheless, research
in trust and reputation still lacks in sound and accepted principles to foster reuse.

To gradually close this gap, we aim to provide a framework for the design of new
reputation systems with reuse. As described above, we thereto propose a hierarchical
component taxonomy of computation engines used in reputation systems. Based on this
taxonomy, we set up a repository containing design knowledge on both a conceptual
and an implementation level. On the one hand, the uniform and well-structured artifacts
collected in this repository can be used by developers to select, understand and apply
existing concepts. On the other hand, they may encourage researchers to provide novel
components on a conceptual and an implementation level. In this way, the reuse of ideas,
concepts and implemented components as well as the communication of reuse knowledge
should be achieved. Furthermore, we argue that the reusable components we identify in
this work could extend current reputation models by the ability to gradually include the
properties of trust described above. To evaluate whether our taxonomy/framework can
cover all aspects of trust, we finally provide a table matching our component classes with
trust properties.

A hierarchical component taxonomy for computation methods in reputation
systems

To derive a taxonomy from existing models, our research includes two steps: (1) the
analysis of the generic process of reputation systems and (2) the identification of logical
components of the computation methods used in common trust and reputation models.
A critical question is how to determine and classify single components. Thereto, we follow
an approach to function-based component classification, which means that the taxonomy
is derived from the functions the identified components fulfill.

Sanger et al. Journal of Trust Management (2015) 2:5

The generic process of reputation systems

The generic process of reputation systems, as depicted in Figure 1, can be divided into
three steps: (1) collection & preparation, (2) computation and (3) storage & communica-
tion. These steps are adapted from the three fundamental phases of reputation systems
identified by [10] and [11]: feedback generation/collection, feedback aggregation and
feedback distribution. Feedback aggregation as the central part of every trust and repu-
tation system is furthermore divided into the three process steps filtering, weighting and
aggregation taken together as computation. The context setting consists of a trustor who
wants to build a trust relation toward a trustee by providing context and personalization

parameters and receiving a trustee’s reputation value.

Collection and preparation

In the collection and preparation phase, the reputation system gleans information about
the past behavior of a trustee and prepares it for subsequent computing. Although per-
sonal experience is the most reliable, it is often not sufficiently available or nonexistent.
Therefore, data from other sources needs to be collected. These can be various, ranging
from public or personal collections of data centrally stored to data requested from dif-
ferent peers in a distributed network. After all available data is gathered, it is prepared
for further use. Preparation techniques include normalization, for instance, which brings
the input data from different sources into a uniform format. Once the preparation is
completed, the reputation data serves as input for the computation phase.

Computation

The computation phase is the central part of every reputation system and takes the rep-
utation information collected as input and generates a trust/reputation value as output.
This phase can be divided into the three generic process steps filtering, weighting and
aggregation. Depending on the computation engine, not all steps have to be implemented.
The first two steps (filtering and weighting) preprocess the data for the subsequent aggre-
gation. The need for these steps is obvious: The first question to be answered is which
information is useful for further processing (filtering). The second process step concerns
the question of ow relevant the information is for the specific situation (weighting). In
line with this, Zhang et al. [12] pointed out that current trust models can be classified into
the two broad categories filtering-based and discounting-based. The difference between
filtering and weighting is that the filtering process reduces the information amount while

reputation system

-~ EN
computation

O
1‘ , storage & / w
4 4 communication <‘

O

collection & . .
preparation filtering

1 Go<]
S e

input context, personalisation @ trust relation @‘ reputation value(s) output

trustor trustee transaction/situation

Figure 1 Generic process of a reputation system, inspired by [10].

Page 5 of 21

Sanger et al. Journal of Trust Management (2015) 2:5 Page 6 of 21

it is enriched by weight factors in the second case. Therefore, filtering can be seen as
hard selection while weighting is more like a soft selection. Finally, the reputation values
are aggregated to calculate one or several reputation scores. Depending on the algo-
rithm, the whole computation process or single process steps can be run through for
multiple times.

Storage and communication

After reputation scores are calculated, they are either stored locally, in a public storage
or both depending on the structure (centralized/decentralized/hybrid) of the reputation
system. Common reputation systems not only provide the reputation scores but also offer
extra information to help the end-users understand the meaning of a score. They should
furthermore reveal the computation process to accomplish transparency.

In this work, we focus on the computation phase, since the first phase (collection &
preparation) and the last phase (storage & communication) strongly depend on the struc-
ture of the reputation system (centralized or decentralized). The computation phase,
however, is independent of the structure and can look alike for systems implemented in
both centralized and decentralized environments. Therefore, it works well for design with

reuse.

Hierarchical component taxonomy

In this section, the computation process is examined in detail. We introduce a novel
hierarchical component taxonomy that is based on the functional blocks of common rep-
utation systems identified in this work. Thereto, we clarify the objectives of the identified
classes (functions) and name common examples. Our analysis and selection of reputa-
tion systems is based on different surveys [2,3,8,13,14]. Figure 2 gives an overview of the

primary and secondary classes identified.

filtering weighting

context comparability

simple arithmetic

attribute-based
criteria compatibility

credibility/propagation

statistic
statistic-based reliability
rating value fuzzy
time

clustering-based

graph-based
personal preferences

|/

Figure 2 Classes of filtering-, weighting- and aggregation-techniques.

Sanger et al. Journal of Trust Management (2015) 2:5

Beginning with the filtering phase, the three broad classes attribute-based, statistic-
based and clustering-based filtering can be identified:

1. Attribute-based filtering: In several trust models, input data is filtered based on a
constraint-factor defined for the value of single attributes. Attribute-based filters
mostly implement a very simple logic, in which an attribute is usually compared to
a reference value. Due to their lightweight, they are proper for reducing huge
amounts of input data to the part necessary for the reputation calculation. Besides
the initial filtering of input data, it is often applied after the weighting phase in
order to filter referrals that have been strongly discounted. Time is an example of
an attribute that is often constrained because it is desirable to disregard very old
ratings. eBay’s reputation system, for instance, only considers transactions having
occurred in the last 12 months for their overview of positive, neutral and negative
ratings. Other models such as Sporas [15] ignore every referral but the latest, if one
party rated another party more than once. In this way, simple ballot stuffing attacks
can be prevented. In ballot stuffing attacks, parties improve their reputation by
means of positive ratings after fake transactions.

2. Statistic-based filtering: Further techniques that are used to enhance the
robustness of trust models against the spread of false rumors apply statistical
patterns. Whitby et al. [16], for example, proposed a statistical filter technique to
filter out unfair ratings in Bayesian reputation systems applying the majority rule.
The majority rule considers feedback that is far away from the majority’s referrals as
dishonest. In this way, dishonest or false feedback can easily be detected and filtered.

3. Clustering-based filtering: Clustering-based filter use cluster analysis approaches
to identify unfair ratings. These approaches are comparatively expensive and
therefore rarely used as filtering techniques. An exemplary procedure is to analyze
an advisor’s history. Since a rater never lies to himself, an obvious way to detect
false ratings is to compare own experience with the advisor’s referrals. Thus, both
fair and unfair ratings can be identified. iCLUB [17], for example, calculates
clusters of advisors whose evaluations against other parties are alike. Then, the
cluster being most similar to the own opinion is chosen as fair ratings. If there is no
common experience (e.g. bootstrapping), the majority rule will be applied. Another
example for an approach using cluster filtering was proposed by Dellarocas [18].

Once all available information is reduced to those suitable for measuring trust and
reputation in the current situation, it becomes clear that various data differ in their
characteristics (e.g. context, reliability). Hence, the referrals are weighted in the second
process step based on different factors. In contrast to the filtering step, applied techniques
differ strongly. For that reason, our classification of weighting techniques is based on the
properties of referrals that are analyzed for the discounting. We distinguish between the
following classes:

1. Context comparability: Reputation data is always bound to the specific context in
which it is created. Ratings that are generated in one application area might not be
automatically applicable in another application area. In e-commerce, for instance,
transactions are accomplished involving different prices, product types, payment

Page 7 of 21

Sanger et al. Journal of Trust Management (2015) 2:5 Page 8 of 21

methods, quality or time. The non-consideration of this context leads to the value
imbalance problem where a malicious seller can build a high reputation by selling
cheap products while cheating on expensive ones. To increase comparability and
avoid such situations, context has become a crucial attribute for many current
approaches like [19] or [9].

2. Criteria comparability: Besides the context in which feedback is created, the
criteria that underlie the evaluation are important. Particularly, if referrals from
different application areas or communities are integrated, criteria comparability
can be crucial. In file-sharing networks, for instance, a positive rating is often
granted with a successful transaction independent of the quality of service. On
e-commerce platforms, in contrast, quality may be a critical factor for customer
satisfaction. Other distinctions could be the costs of reviews, the level of
anonymity or the number of peers in different communities or application
areas. Weighting based on criteria comparability can compensate these
differences.

3. Credibility/propagation: In network structures such as in the web-of-trust, trust
can be established along a recommendation or trust chain. Obviously, referrals that
have first-hand information about the trustworthiness of an agent are more
credible than referrals received at second-hand (with propagation degree of two) or
higher. Therefore, several models apply a propagation (transitivity) rate to discount
referrals based on their distance. The biometric identity trust model [20], for
instance, derives the reputation-factor from the distance of nodes in a web-of-trust.

4. Reliability: Reliability or honesty of referrals can strongly affect the weight of
reviews. The concept of feedback reputation that measures the agents’ reliability in
terms of providing honest feedback is often applied. As a consequence, referrals
created by agents having a low feedback reputation have a low impact on the
aggregated reputation. The bases for this calculation can be various. Google’s
PageRank [21], for instance, involves the position of every website connected to the
trustee in the web graph in their recursive algorithm. Epinions [22], on the other
hand, allows users to directly rate reviews and reviewers. In this way, the effects of
unfair ratings are diminished.

5. Rating value: Trust is event sensitive. For stronger punishment of bad behavior,
the weight of positive ratings compared to negative ratings can be calculated
asymmetrically. An example for a model using an “adaptive forgetting scheme” was
proposed by Sun et al. [23], in which good reputation can be built slowly through
good behavior but easily be ruined through bad behavior.

6. Time: Due to the dynamic nature of trust, it has been widely recognized that time
is one important factor for the weighting of referrals. Old feedback might not be as
relevant for reputation scoring as new referrals. An example measure for
time-based weighting is the “forgetting factor” proposed by Jesang [24].

7. Personal preferences: Reputation systems are used by various end-users (e.g.
human decision makers, services). Therefore, a reputation system must allow the
adaptation of its techniques to subjective personal preferences. Different actors
might have different perceptions regarding the importance of direct experience
and referrals, the significance of distinct information sources or the rating of

newcomers.

Sanger et al. Journal of Trust Management (2015) 2:5

The tuple of reputation data and weight-factor(s) serve as input for the third step of
the computation process - the aggregation. In this phase, one or several trust/reputa-
tion values are calculated by composing the available information. In some cases, the
weighting and the aggregation process are run through repetitively in an iterative manner.
However, the single steps can still be logically separated. The list of proposed algorithms
to aggregate trust and reputation values has become very long during the last decade.
Here, we summarize the most common aggregation techniques and classify them into the

four blocks simple arithmetic, statistic, fuzzy and graph-based models:

1. Simple arithmetic: The first class includes simple aggregation techniques like
ranking, summation or average. Ranking is a very basic way to measure
trustworthiness. In ranking algorithms, ratings are counted and organized in a
descending order based on that value. This measure has no exact reputation score.
Instead, it is frequently used as a proxy for the relative importance/trustworthiness.
Examples for systems using ranking algorithms are message boards like Slashdot
[25] or citation counts used to calculate the impact factor in academic literature.
Other aggregation techniques that are well known due to the implementation on
eBay or Amazon [26] are the summation (adding up positive and negative ratings)
or the average of ratings. Summation, though, can easily be misleading, since a
value of 90 does not reveal the composition of positive and negative ratings (e.g.
+100,-10 or +90,0). The average, on the other hand, is a very intuitive and easily
understandable algorithm.

2. Statistic: Many of the prominent trust models proposed in the last years use a
statistical approach to provide a solid mathematical basis for trust management.
Applied techniques range from Bayesian probability over belief models to Hidden
Markov Models. All models based on the beta probability density function (beta
PDF) are examples for models simply using Bayesian probability. The beta PDF
represents the probability distributions of binary events. The a priori reputation
score is thereby gradually updated by new ratings. The result is a reputation score
that is described in a beta PDF function parameter tuple (¢, 8), whereby «
represents positive and B represents negative ratings. A well known model using
the beta PDF is the Beta Reputation system [24]. A weakness of Bayesian
probabilistic models, however, is that they cannot handle uncertainty. Therefore,
belief models extend the probabilistic approach by Dempster-Shafer theory (DST)
or subjective logic to include the notion of uncertainty. Trust and reputation
models involving a belief model were proposed by Jasang [27] or Yu and Singh [28].
More complex solutions that are based on machine learning, use the Hidden
Markov Model, a generalization of the beta model, to better cope with the dynamic
behavior. An example was introduced by Malik et al. [29].

3. Fuzzy: Aggregation techniques classified as fuzzy models use fuzzy logic to
calculate a reputation value. In contrast to classical logic, fuzzy logic allows to
model truth or falsity within an interval of [0,1]. Thus, it can describe the degree to
which an agent/resource is trustworthy or not trustworthy. Fuzzy logic has been
proven to deal well with uncertainty and mimic the human decision making
process [30]. Thereby, a linguistic approach is often applied. REGRET [31] is one
prominent example of a trust model making use of fuzzy logic.

Page 9 of 21

Sanger et al. Journal of Trust Management (2015) 2:5 Page 10 of 21

4. Graph-based: A variety of trust models employ a graph-based approach. They rely
on different measures describing the position of nodes in a network involving the
flow of transitive trust along trust chains in network structures. As online social
networks have become popular as a medium for disseminating information and
connecting people, many models regarding trust in social networks have lately
been proposed. Graph-based approaches use measures from the field of graph
theory such as centrality (e.g. Eigenvector, betweenness), distance or node-degree.
Reputation values, for instance, grow with the number of incoming edges (in-
degree) and increase or decrease with the number of outgoing edges (out-degree).
The impact of one edge on the overall reputation can depend on several factors like
the reputation of the node an edge comes from or the distance of two nodes.
Popular algorithms using graph-based flow model are Google’s PageRank [21] as
well as the Eigentrust Algorithm [32]. Other examples are the web-of-trust or trust
models particularly designed for social networks as described in [14]. As mentioned
above, the weighting and aggregation phases are incrementally run through for
several times due to the incremental nature of these algorithms.

The classification of the computation engine’s components used in different trust mod-
els in this taxonomy is not limited to one component of each primary class. Depending
on the computation process, several filtering, weighting and aggregation techniques can
be combined and run through more than once. Malik et al. [29], for instance, introduced
a hybrid model combining heuristic and statistical approaches. However, our taxonomy
can reveal the single logical components a computation engine is built on. Moreover,
it serves as an overview of existing approaches. Since every currently known reputa-
tion system can find its position, to the best of our knowledge, this taxonomy can be
seen as complete. Though, an extension by new classes driven by novel models and
ideas is possible. Our hierarchical component taxonomy currently contains 3 primary
component classes, 14 secondary component classes, 23 component terms and 29 sub-
sets. Table 2 shows an excerpt of the hierarchical component taxonomy with building
blocks of the primary class “weighting” The full taxonomy is provided in Additional file 1:
Table S1.

The component taxonomy as a framework for design with reuse

The hierarchical component taxonomy introduced in the former section serves as a nat-
ural framework for the design of reputation systems with reuse. To support this process,
we set up a component repository combining a knowledge and a service repository.
Thus, it does not only contain information about software components on implementa-
tion level but also provides extensive descriptions of the ideas applied on a conceptual
level. This comprehensive set of fundamental component concepts and ideas combined
with the related implementation allows the reuse of both ideas and already implemented
components.

In this section, we firstly describe the conceptual design of our component reposi-
tory in detail. Then, we elaborate on the implementation of a web application employing
our thorough repository to provide design knowledge for reuse on a conceptual and an
implementation level.

Sanger et al. Journal of Trust Management (2015) 2:5 Page 11 of 21

Table 2 Excerpt of the hierarchical component taxonomy with descriptions

Primary Secondary Component term Subset Description
component component
class class
credibility/ propagation discount Discount referrals along
propagation trust chains
subjective reliability property similarity Discount based on
similarity of personal
properties

rating similarity ~ Discount referrals based
on similarity of ratings
toward other agents

weighting reliability Explicit Discount based on explicit
reputation information like
referrals or certificates

objective reliability Implicit Discount based on implicit
reputation information like
profile age, number of
referrals or position

rating value asymmetric rating Strongly discount positive
ratings compared to
negative ratings (event
sensitive)

Conceptual design of the component repository

Reuse-based software engineering can be implemented on different levels of abstraction,
ranging from the reuse of ideas to the reuse of already implemented software components
for a very specific application area. In this work, we want to apply our taxonomy for reuse
on two levels — a conceptual level and an implementation level. Therefore, the developed
repository provides design knowledge for reuse on two logical layers (see Figure 3).

context comparability

simple arithmetic
attribute-based

criteria compatibility

credibility/propagation -
statistic

reliability

rating value fuzzy

clustering-based

\d

. i . X graph-based
service repository (implementation level)—

personal preferences

knowledge repository (conceptual level) —

® | | | >

filtering weighting aggregation

Figure 3 Logical layers of the component repository for design with reuse.

Sanger et al. Journal of Trust Management (2015) 2:5 Page 12 of 21

Reuse on conceptual level

When reusing an implemented component, one is unavoidably constrained by design
decisions that have been made by the developer. A way to prevent this is to conceive more
abstract designs that do not specify the implementation. Thus, we provide an abstract
solution to a problem by means of design pattern-like concepts. Design patterns are
descriptions of commonly occurring problems and a generic solution to the problems that
can be used in different settings [33]. Our design pattern-like concepts consist of essential
elements that are exemplary depicted in Table 3.

Reuse on implementation level

On implementation level, we provide fully implemented reusable components by means
of web services in a service-orientated architecture. These services encapsulate the con-
cepts’ logic and functionality in independent and interchangeable modules to achieve the
separation of concerns. The web services are incorporated via well-defined interfaces. All
services provided are registered as artifacts in the service repository. An artifact contains
essential information about one live reachable service such as ID, type (REST or ws), URL,
description, parameters, example calls, example output, the design pattern that is imple-
mented by the service, and tags describing the functionality. Table 4 shows an example
artifact for the design pattern described above.

Table 3 Design pattern on the conceptual level (example)

Component term Context similarity
Subset Absolute congruence
Description This component uses an absolute congruence metric as similarity measure to

identify context similarity.
Problem description Reputation data is always bound to the specific context in which it was created.
Ratings that were generated in one application area might not be automatically

applicable in another application area which can result in the value imbalance
problem.

Solution description Apply similarity measurement between context ¢; (reference context) and con-
text ¢; of referrals in the referral set to deliver a weight-factor for each item of the

referral set using the following formula:
wicr G) = @ OKG
T k) Uk(©)

k(c;) denotes the total number of keywords describing context ¢;.

Applicability Set of nominal context attributes.
Code example (php)
function calculate_values ($reference, S$context_sets) {
Sreference_context = $reference[’context_attributes’];
Sreturn_values = array();
while (!empty ($context_sets)) {
...shortened. ..

return $return7values;

}
Implementation Context similarity-based weighting service (absolute congruence)
Literature

e Mohammad Gias Uddin, Mohammad Zulkernine, and Sheikh Igbal
Ahamed. 2008. CAT: a context-aware trust model for open and dynamic
systems. In Proceedings of the 2008 ACM symposium on Applied
computing (SAC '08). ACM, New York, NY, USA, 2024-2029.

Tags weighting, context, similarity, congruence

Sanger et al. Journal of Trust Management (2015) 2:5

Table 4 Web service description on implementation level (example)

Component term Context similarity

Subset Absolute congruence

Type REST

Demo http://trust.bayforsec.de/ngot/webservice/Client/?=Weighting-congruence-absolute-
call.php

Description This service provides an absolute similarity measurement between a reference context

and a context-set of referrals.
Example: The sets 'registered’,charged’, ‘verified” and 'registered’, ‘costless’, 'unverified’
have a similarity of 1/3.

Parameters
// define words that describe the quality of a referall
$reference_context : array("words" => array (TEXT));
$referral_sets = array(Scontext_set);
$referral_set = array("id" => NUMBER, "words" => array (TEXT));
Example call

require_once ('WebserviceCallHelper.php') ;

$arguments = array ("words" => array ("registered",'"charged","verified"));
Sreferral set = array();
$referral set[0] = array("id" => "10000", "words" =>
array ("registered","costless", "unverified"));
$referral set[l] = array("id" => "10001", "words" =>
array ("registered", "charged", "verified"));
$referral set[2] = array("id" => "10002", "words" =>
array ("registered","costless", "verified"));

$webservice_call = new WebserviceCallHelper (array (
‘base_url’ => WEBSERVICE URL,
‘format’ => "html",
‘component’ => "Weighting\CongruenceAbsolute"
)) i
$webservice_call->get_result (Sarguments, $referral_set);

Example output

Array
(
[status] => 200
[data] => Array
(
[0] => Array
(

[0] => 10000
[1] => 0.2
)
[1] => Array
(

[0] => 10001
[1] => 1
)
[2] => Array
(
[0] => 10002
[1] => 0.5

)
Pattern Implemented Context similarity (Absolute congruence)
Tags weighting, context, similarity, congruence

Implementation of the repository

To demonstrate the feasibility of our approach, we have prototypically implemented the
repository as a web-based application in a three-tier client-server-architecture [34]. To
give an overview of the chosen architecture, we distinguish between server-side and
client-side implementation.

Server-side

On server-side, the logic is implemented in PHP on an Apache server (logic layer) con-
necting to a MySQL database (persistent layer). The MySQL database contains all data
regarding the design patterns as described in Table 2. Each of these design patterns is also
implemented in a web service. To enable a standardized realization of new web services
and a flawless call via standardized interfaces, we employ an abstract class Component. All

Page 13 of 21

Sanger et al. Journal of Trust Management (2015) 2:5 Page 14 of 21

components (implemented as web services) must inherit from this class, which particu-
larly requires overwriting the function calculate_values. To make the generic component
independent of the input data, developers are advised to make use of the PHP function
func_get_args(). In this way, distinct components can receive a variety of arguments. To
consistently handle client calls, our architecture is extended by a WebserviceCallHandler.
Figure 4 depicts the schematic layout.

All web services implementing the trust pattern currently described in our knowledge
repository have been created and registered as artifacts in our service repository [34].
Furthermore, these artifacts are described in detail including a definition of input, output
and example calls as defined in Table 4.

Client-side

On client-side (presentation layer), we employ the current web standards HTMLS5,
JavaScript and CSS (Bootstrap). The front end is divided into three main pages —
“overview’, “knowledge repository” and “service repository” — which provide information
on the general concept, the trust patterns and the web services. To enable a standard-
ized call of a web service from client-side, a WebserviceCallHelper allows a simple call of
each component by configuration and provides all functions necessary to establish a con-
nection to the repository. The configuration details are passed to the constructor, which
requires a base_url, an output format (HTML, XML or JSON) and a unique component
name as illustrated below.

Example call of a filtering component via the WebserviceCallHelper

Swebservice_call = new WebserviceCallHelper (array (
'base_url’ => "http://trust.bayforsec.de/ngot/webservice/",
‘format’ => "html",
’component’ => "Filtering\AgeBasedAbsolute"

Swebservice call->get result ($arguments, S$Sreferral set);

Client | Server

AgeBasedAbsolute

»

\\>
v

CongruenceAbsolute [

\ TimeDiscounting |
Relative

Webservice | | Webservice /
CallHelper [™ CaliHandler §

CongruenceAbsolute

TimeDiscounting

Relative

Figure 4 Schematic view on the service architecture.

Sanger et al. Journal of Trust Management (2015) 2:5 Page 15 of 21

Evaluation

To rigorously demonstrate the proper functioning and quality of our approach, we carry
out a two-part evaluation of our artifact in this section. As there is currently no compara-
ble framework, we firstly perform a descriptive scenario-based evaluation. According to
Hevner et al. [4], this is a standard approach for innovative artifacts like ours. To demon-
strate the completeness of our taxonomy, we secondly conduct a static analysis [4], in
which we match all components to the trust properties described in Section ‘“The notion
of trust and its properties’.

Scenario analysis: Reputation system development
The fictitious web developer John Gray runs an electronic marketplace platform for
philatelists and numismatics. The platform has been launched with his friends as the first
users but has been growing fast. Meanwhile, most users do not know each other in person
anymore. As a result, many of the initial users have stopped interacting with the newcom-
ers as they do not trust them. After realizing this problem, John decides to introduce an
online reputation system in order to establish trust among the strangers. In the following,
we describe how our knowledge and service repository can help him to build a reputation
system that perfectly meets his requirements.

Having read the basics on our component model, John concludes that he wants to build
a computation engine that makes use of components of all three phases — filtering, weight-
ing and aggregation. Thinking about the experiences made with sellers on the platform,
he recognizes that most of them do not deliver the same quality all the time. Thus, an
age-based filter should be employed to make old referrals less important than new ones.
Furthermore, there are sellers that usually deliver high quality stamps while offering poor
quality coins. Therefore, a weighting component based on context similarity (absolute
congruence) should be selected. Regarding the aggregation alternatives, John decides to
make use of the average component as the simple average is probably the most intuitive
and most transparent aggregation technique for the users. Finally, the single components
are combined in sequence to a fully functional computation engine as depicted in Figure 5.

The code listed below shows an example for the implementation of John’s computation
engine. Here, the WebserviceCallHelpers for each of the selected components have to be
instantiated first as described in Section ‘Client-side’ Secondly, the referral set needs to
be loaded and prepared according to input parameter descriptions provided for each web
service in the component repository. In its current form, the framework does not pro-
vide any classes to automatically plug single components together (glue class). Thus, the
developer has to ensure that the output of one component is correctly provided as an
input for the following component. This lose coupling, however, allows for more flexibil-
ity. All details on the input and output format can be found in the artifact description of
each component. While the input data varies from component to component, the output
is alike for components of each primary class.

Filter: q 3 Weighting: iohted
referral § reduce context similarit weighte Aggregation: i
age-based P referral V1 referral)—| "9 reputation
set N (absolute average value
filter (absolut) set set
congruence)

Figure 5 Sequence of components for John's computation engine.

Sanger et al. Journal of Trust Management (2015) 2:5 Page 16 of 21

Example code for the computation engine described above

//create helper for filtering component
Swebservice_filter = new WebserviceCallHelper (array (
'base_url’ => WEBSERVICE_ URL,
'format’ => "html",
’component’ => "Filtering\AgeBasedAbsolute"

//create helper for weighting component
Swebservice weight = ...as above...

//create helper for aggregation component
Swebservice aggregate = ...as above..

//define referral set
$referral set = array("id" => NUMBER, "time" => DATE, "context" => array (TEXT), "
rating" => NUMBER) ;

//call computation
Sreputation value = $webservice aggregate(
$glue->prepare_for aggregation($webservice_weight (
$glue->prepare_for weighting($webservice_ filter->get_result(
$refer€aliset))
)

)i

This scenario elucidates that our knowledge and service repository has an obvious util-
ity from a practical point of view since developers can easily access it and gain knowledge
about online reputation systems. Thereby, we may help to better spread innovative ideas
and allow developers to experiment with different computation techniques. However,
our approach requires specific knowledge on the structure of the repository, the func-
tioning of each component and details on how to plug components together. Developers
need to manually combine components and take care, whether they use valid input data
and a feasible combination of reputation system components. In its current form, our
framework is not very “developer friendly” Therefore, further research will be necessary
in order to improve the practical usability of our component repository. In Section ‘Con-
tribution and future work; we discuss open issues in more detail.

Static analysis: Matching components and trust properties

To guarantee the proper generation of computational trust, trust-enforcing mechanisms
such as reputation systems should be able to consider and address all properties of trust.
As our component taxonomy serves as a framework for the design of new reputation sys-
tems with reuse, it should enable developers to extend current reputation models by the
ability to gradually include the various properties of trust. Therefore, a way to evaluate
the completeness of our solution is to review whether a trust system that is built accord-
ing to our framework could meet this standard. In Table 5, we match the computation
components identified above to the properties of trust introduced in Section ‘“The notion
of trust and its properties’ Since our taxonomy is based on reputation systems analyzed
in various surveys, this approach also enables us to identify aspects of trust that have only
rarely been considered in research so far.

Examining Table 5, we find that all trust properties listed are widely covered. There is at
least one component addressing each single characteristic. Going into more detail, we find
that there are many proposals that have developed components to personalize reputation
systems, thus covering the subjective property of trust. This reflects a general trend to an
enhanced personalization of reputation systems. Furthermore, it becomes clear that all
of our weighting and aggregation components follow the fine-grained property of trust,
i.e. that trust can be modeled as a continuous variable. For the filtering components, the
fine-grained property is not entirely applicable in the same meaning as filtering has no
direct influence on the trust value of referrals. Since the effect of filtering is that a referral

Table 5 Matching reputation system components and trust properties

Trust properties

Primary
component
class

Secondary
component
class

Dynamic

Context-
dependent

Multi-
faceted

Propagative

Composable

Subjective

Fine-
grained

Event-

sensitive

Reflexive

Self-

reinforcing

Filtering

attribute-based

statistic-based

clustering

Weighting

Computation
components

context comparability

criteria comparability

credibility

reliability

rating value

time

personal preferences

Aggregation

simple arithmetic

statistic

fuzzy

graph-based

Q00000000 Cee

000000000 ®eO00

Q00000000000

000000 OeeO 0000

000000000000

0000000000000

00000000000 OO

0000000000000

000080 0Oe®e0C0e00

eeee00®0000®®0O

Q not addressed.

O partly addressed.
. completely addressed.

(5107) 1uawabpupyy 1snij Jo |puinor ‘b 33 19bues

ST

LZ 40 /| abed

Sanger et al. Journal of Trust Management (2015) 2:5 Page 18 of 21

either is further considered or not, it shows a binary character rather than being fine-
grained. In contrast to the subjective and fine-grained properties of trust, other properties
such as context-dependent, multi-faceted and event-sensitive are particularly addressed
by only one or two components. Note that this does not automatically mean that there
is an increased necessity for future research concerning these properties. It may also be
possible that one component is enough to cover one trust property. More detailed studies
on this could be part of future work.

Overall, we can say that computational trust can be represented quite accurately when
using our taxonomy and the provided components as a basis for the development of new
reputation systems or the extension of existing models. Note, however, that this is only
one view on our taxonomy. Conducting a comparable analysis from the viewpoint of
attacks and defense mechanisms, for instance, the outcomes may vary greatly.

Contribution and future work

Many surveys of trust and reputation systems give an overview of existing trust and repu-
tation systems by means of a classification of existing models and approaches. In contrast
to this, we provide a collection of ideas and concepts classified by their functions. Further-
more, these ideas are not only named but also clearly described in well-structured design
pattern-like artifacts which can easily be adapted to a specific situation. Therewith, we
reorganized the design knowledge for computation techniques in reputation systems and
translated the most common ideas into a uniform format. To directly make use of novel
components, the web services created on implementation level can instantly be reused
and integrated in existing reputation systems to extend their capabilities. This approach
(i.e. publicly providing implemented computation components as web services) may help
to better spread innovative ideas in trust and reputation systems and give system builders
a better choice allowing to experiment with different computation techniques. Moreover,
we encourage researchers to focus on the design of single components by providing a
platform on which concepts and their prototypical implementation can be made publicly
available.

Nonetheless, there are still some unexplored areas regarding the design with reuse in
trust and reputation systems. Firstly, reusability could play a role in process steps other
than the computation phase. To clarify the opportunities, further research is necessary in
this area. Secondly, our hierarchical taxonomy is currently limited to a functional view on
the identified components but developers may also benefit from additional views. Because
of the importance of the robustness of trust and reputation systems [35], we are particu-
larly interested in an attack view. In [36], we present first ideas on this issue. We propose
a taxonomy of attacks on reputation systems and then refer to the single components of
our repository as solutions to the specific attack classes. In this way, we not only support
reputation system designers in the development of more reliable and more robust rep-
utation systems with already existing components but also help to identify weaknesses
that have not been addressed so far. Thirdly, the selection and interpretation of adequate
components for new reputation systems in a particular application area requires time,
effort and — to some extent — knowledge of this research area. To increase usability, a
software application is needed to support a user in this development process. Ultimately,
the application may even be able to automatically find the most qualified composition
for specific requirements and input data. This, in turn, demands for generic testbeds that

Sanger et al. Journal of Trust Management (2015) 2:5 Page 19 of 21

enable objective evaluations of reputation systems because so far, researchers have mainly
been developing their own testing scenarios favoring their own work [37]. The most well-
known proposals regarding independent testbeds are ART [38] and TREET [37]. Recently,
Irissappane and Zhang [39,40] made another important step forward by introducing a
publicly available testbed that is able to reflect real environmental settings. We plan to
use their tool in future studies. Finally, we need to observe the usage of our repository in
practice to learn from how users deal with it. This can either be done through conducting
experimental user studies or by interviewing developers who use our repository in a real
environment. In this way, we can run through a continuous improvement process.

Conclusion

The research in trust and reputation systems is still growing. In this paper, we presented
concepts to foster reuse of existing approaches. We provided a hierarchical taxonomy of
computation components from a functional view and described the implementation of
a component repository that serves as both a knowledge base and a service repository.
In this way, we communicate design knowledge for reuse, support the development of
new reputation systems and encourage researchers to focus on the development of single
components that can be integrated in various reputation systems to easily extend their
capabilities by new features. Matching the identified components and the properties of
trust, we found that integrating existing ideas and concepts can lead to a reputation sys-
tem that widely reflects computational trust by addressing all properties of trust described
in literature.

Additional file

[Additional file 1: Table S1.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JS proposed the initial idea of this paper. He developed the hierarchical component taxonomy and implemented the
component repository. CR and JS conducted the evaluation of the proposed ideas. CR and JS furthermore revised this
paper according to reviewers’ comments. GP supervised the research, contributed to the paper writing and made
suggestions. All authors read and approved the final manuscript.

Acknowledgment
The research leading to these results was supported by the Bavarian State Ministry of Education, Science and the Arts" as
part of the FORSEC research association.

Received: 9 December 2014 Accepted: 1 April 2015
Published online: 13 May 2015

References

1. Electronics, Cars, Fashion, Collectibles, Coupons and More | eBay. http://www.ebay.com

2. YaoY,Ruohomaa S, Xu F (2012) Addressing common vulnerabilities of reputation systems for electronic commerce.
JTheor Appl Electron Commerce Res 7(1):1-20

3. Tavakolifard M, Almeroth KC (2012) A taxonomy to express open challenges in trust and reputation systems. J
Commun 7(7):538-551

4. Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quarterly 28(1):75-105

5. McKnight DH, Chervany NL (1996) The Meanings of Trust. Technical report. University of Minnesota, Management
Information Systems Research Center

6. Gambetta D (1988) Can we trust trust? In: Gambetta D (ed). Trust: making and breaking cooperative relations. Basil
Blackwell, Oxford. pp 213-237

7. ArtzD, Gil Y (2007) A survey of trust in computer science and the semantic web. Web Semantics 5(2):58-71

8. Jgsang A, Ismail R, Boyd C (2007) A survey of trust and reputation systems for online service provision. Decis Support
Syst 43(2):618-644

http://www.journaloftrustmanagement.com/content/supplementary/s40493-015-0015-3-s1.pdf
http://www.journaloftrustmanagement.com/content/supplementary/s40493-015-0015-3-s1.pdf
http://www.ebay.com

Sanger et al. Journal of Trust Management (2015) 2:5

14.
15.

20.

22.
23.
24.
25.
26.

27.
28.

29.

30.
. Sabater J, Sierra C (2002) Reputation and social network analysis in multi-agent systems. In: Proceedings of the first

32.

33.
34
35.

36.

37.

38.

Rehak M, Gregor M, Pechoucek M, Bradshaw J (2006) Representing context for multiagent trust modeling. In:
Skowron A, Barthés JP, Jain LC, Sun R, Morizet-Mahoudeaux P, Liu J, Zhong N (eds). Proceedings of the 2006
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Hong Kong, China. IEEE Computer
Society, Washington, DC. pp 737-746

Swamynathan G, Almeroth KC, Zhao BY (2010) The design of a reliable reputation system. Electron Commerce Res
10(3-4):239-270

Resnick P, Kuwabara K, Zeckhauser R, Friedman E (2000) Reputation systems. Commun ACM 43(12):45-48

Zhang L, Jiang S, Zhang J, Ng WK (2012) Robustness of trust models and combinations for handling unfair ratings. In:
Dimitrakos T, Moona R, Patel D, McKnight DH (eds). Trust Management VI: Proceedings of the 6th IFIP WG 11.11
international conference (IFIPTM). Springer, Berlin, Heidelberg, Surat, India. pp 36-51

Noorian Z, Ulieru M (2010) The state of the art in trust and reputation systems: a framework for comparison. J Theor
Appl Electron Commerce Res 5(2):97-117

Sherchan W, Nepal S, Paris C (2013) A survey of trust in social networks. ACM Comput Surv 45(4):1-33

Zacharia G, Moukas A, Maes P (2000) Collaborative reputation mechanisms for electronic marketplaces. Decis
Support Syst 29(4):371-388

Whitby A, Jasang A, Indulska J (2004) Filtering out unfair ratings in Bayesian reputation systems. In: Falcone R, Barber
S, Sabater J, Singh M (eds). Proceedings of the third international joint conference on autonomous agents and multi
agent systems, New, York, USA. I[EEE Computer Society, Washington, DC. pp 106-117

Liu S, Zhang J, Miao C, Theng Y-L, Kot AC (2011) iCLUB: an integrated clustering-based approach to improve the
robustness of reputation systems. In: Sonenberg L, Stone P, Tumer K, Yolum P (eds). Proceedings of the 10th
international conference on Autonomous Agents and Multiagent Systems (AAMAS), Taipei, Taiwan. IFAAMAS,
Richland, SC. pp 1151-1152

Dellarocas C (2000) Immunizing online reputation reporting systems against unfair ratings and discriminatory
behavior. In: Jhingran A, MacKie J, Tygar D (eds). Proceedings of the 2nd ACM conference on electronic commerce,
Minneapolis, MN. ACM, New York. pp 150-157

Zhang H, Wang Y, Zhang X (2012) A trust vector approach to transaction context-aware trust evaluation in
e-commerce and e-service environments. In: Shih C, Son S, Kuo T, Huemer C (eds). Proceedings of the 5th IEEE
international conference on Service-Oriented Computing and Applications (SOCA). IEEE Computer Society
Washington, DC, Taipei, Taiwan. pp 1-8

Obergrusberger F, Baloglu B, Sénger J, Senk C (2013) Biometric identity trust: toward secure biometric enrollment in
web environments. In: Yousif M, Schubert L (eds). Proceedings of the 3rd international conference on Cloud
Computing (CloudComp), Vienna, Austria. Springer, Berlin, Heidelberg. pp 124-133

Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Networks
30(1-7):107-177

Epinions.com: Read expert reviews on Electronics, Cars, Books, Movies, Music and More. http://www.epinions.com/
Sun'Y,Han Z, Yu W, Ray Liu K (2006) Attacks on trust evaluation in distributed networks. In: Proceedings of Th 40th
annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, IEEE Computer Society
Washington, DC. pp 1461-1466

Josang A, Ismail R (2002) The beta reputation system. In: Proceedings of the 15th bled conference on electronic
commerce, Bled, Slovenia. pp 41-55

Slashdot: News for nerds, stuff that matters. http://www.slashdot.org/

Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs & more. http://www.amazon.com
Josang A (2001) A logic for uncertain probabilities. Int J Uncertainty Fuzziness Knowledge-Based Syst 9(3):279-311
Yu B, Singh MP (2002) An evidential model of distributed reputation management. In: Proceedings of the first
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Bologna, Italy. ACM, New
York, NY. pp 294-301

Malik Z, Akbar I, Bouguettaya A (2009) Web services reputation assessment using a Hidden Markov Model. In: Baresi
L, Chi CH, Suzuki J (eds). Service-oriented computing: Proceedings of the 7th International Joint Conference on
Service-Oriented Computing (ICSOC-ServiceWave), Stockholm, Sweden. Springer Berlin, Heidelberg. pp 576-591
Song S, Hwang K, Zhou R, Yu-Kwong K (2005) Trusted P2P transactions with fuzzy reputation aggregation, Vol. 9

International joint conference on Autonomous Agents and Multiagent Systems (AAMAS), Bologna, Italy. ACM, New
York, NY. pp 475-482

Kamvar SD, Schlosser MT, Garcia-Molina H (2003) The Eigentrust algorithm for reputation management in P2P
networks. In: Hencsey G, White B, Chen YF, Kovécs L, Lawrence S (eds). Proceedings of the 12th International
Conference on World Wide Web (WWW), Budapest, Hungary. ACM, New York, NY. pp 640-651

Gamma E (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley, Reading

Next Generation Online Trust. http://trust.bayforsec.de

Josang A (2012) Robustness of trust and reputation systems: does it matter? In: Dimitrakos T, Moona R, Patel D,
McKnight DH (eds). Trust management VI: Proceedings of the 6th IFIP WG 11.11 International Conference (IFIPTM),
Surat, India. Springer, Berlin, Heidelberg. pp 253-262

Sanger J, Pernul G (2015) Reusable defense components for online reputation systems. In: Marsh S, Jensen CD,
Murayma Y, Dimitrakos T (eds). Trust management IX: Proceedings of the 9th IFIP WG 11.11 International
Conference (IFIPTM), Hamburg, Germany. Springer, Berlin, Heidelberg

Kerr R, Cohen R (2010) TREET: The Trust and Reputation Experimentation and Evaluation Testbed. Electron
Commerce Res 10(3-4):271-290

Fullam KK, Voss M, Klos TB, Muller G, Sabater J, Schlosser A, Topol Z, Barber KS, Rosenschein JS, Vercouter L (2005) A
specification of the Agent Reputation and Trust (ART) Testbed. In: Dignum F, Dignum V, Koenig S, Kraus S, Singh MP,
Wooldridge M (eds). Proceedings of the 4th international joint conference on Autonomous Agents and Multiagent
Systems (AAMAS), Utrecht, Netherlands. ACM, New York, NY, USA. pp 512-518

Page 20 of 21

http://www.epinions.com/
http://www.slashdot.org/
http://www.amazon.com
http://trust.bayforsec.de

Sanger et al. Journal of Trust Management (2015) 2:5 Page 21 of 21

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

Irissappane AA, Jiang S, Zhang J (2012) Towards a comprehensive Testbed to evaluate the robustness of reputation
systems against unfair rating attacks. In: Herder E, Yacef K, Chen L, Weibelzahl S (eds). Workshop and Poster
Proceedings of the 20th conference on User Modeling, Adaptation, and Personalization (UMAP), Montreal, Canada.
Springer Berlin, Heidelberg

Irissappane AA, Zhang J (2014) A Testbed to evaluate the robustness of reputation systems in e-Marketplaces. In:
Bazzan A, Huhns MN, Lomuscio A, Scerri P (eds). Proceedings of the 13th international conference on Autonomous
Agents and Multiagent Systems (AAMAS), Paris, France. ACM, New York, NY, USA. pp 1629-1630

Grandison T, Sloman M (2000) A survey of trust in internet applications. [EEE Commun Surv Tutorials 3(4):2-16

Yu B, Singh MP (2000) A social mechanism of reputation management in electronic communities. In: Goos G,
Hartmanis J, van Leeuwen J (eds). Proceedings of the 4th international workshop on cooperative information agents
IV - The future of information agents in cyberspace (CIA), Boston, USA, Springer, London, UK. pp 154-165

Wang Y, Vassileva J (2003) Trust and reputation model in peer-to-peer networks. In: Shahmehri N, Graham RL,
Caronni G (eds). Proceedings of the 3rd international conference on Peer-to-Peer Computing (P2P), Linkdping,
Sweden. IEEE Computer Society Washington, DC. pp 150-157

Golbeck JA (2005) Computing and applying trust in web-based social networks. PhD thesis, University of Maryland,
College Park, MD, USA

Haque MM, Ahamed SI (2007) An omnipresent Formal Trust Model (FTM) for pervasive computing environment. In:
Proceedings of the 31st annual international Computer Software and Applications Conference (COMPSAC), Bejing,
China. IEEE Computer Society Washington, DC. pp 49-56

Uddin MG, Zulkernine M, Ahamed SI (2008) CAT: a context-aware trust model for open and dynamic systems. In:
Wainwright RL, Haddad H (eds). Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza,
Brazil. ACM, New York, NY. pp 2024-2029

Wishart R, Robinson R, Indulska J, Jasang A (2005) Superstringrep: reputation-enhanced service discovery. In:
Estivill-Castro V (ed). Proceedings of the 28th Australasian conference on computer science, Newcastle, NSW,
Australia. Australian Computer Society, Inc, Darlinghurst, Australia. pp 49-57

Christianson B, Harbison WS (1997) Why Isn't trust transitive? In: Christianson B, Crispo B, Lomas T, Roe M (eds).
Proceedings of the 2nd international workshop on security protocols, Paris, France. Springer, London, UK. pp 171-176

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Problem context and motivation
	The notion of trust and its properties
	Reputation-based trust
	Research gap: design of reputation systems with reuse

	A hierarchical component taxonomy for computation methods in reputation systems
	The generic process of reputation systems
	Collection and preparation
	Computation
	Storage and communication

	Hierarchical component taxonomy

	The component taxonomy as a framework for design with reuse
	Conceptual design of the component repository
	Reuse on conceptual level
	Reuse on implementation level

	Implementation of the repository
	Server-side
	Client-side
	Example call of a filtering component via the WebserviceCallHelper

	Evaluation
	Scenario analysis: Reputation system development
	Example code for the computation engine described above

	Static analysis: Matching components and trust properties

	Contribution and future work
	Conclusion
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgment
	References

