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Abstract

Often in open multiagent systems, agents interact with other agents to meet their own
goals. Trust is, therefore, considered essential to make such interactions effective.
However, trust is a complex, multifaceted concept and includes more than just
evaluating others’ honesty. Many trust evaluation models have been proposed and
implemented in different areas; most of them focused on algorithms for trusters to
model the trustworthiness of trustees in order to make effective decisions about which
trustees to select. For this purpose, many trust evaluation models use third party
information sources such as witnesses, but slight consideration is paid for locating such
third party information sources. Unlike most trust models, the proposed model defines
a scalable way to locate a set of witnesses, and combines a suspension technique with
reinforcement learning to improve the model responses to dynamic changes in the
system. Simulation results indicate that the proposed model benefits trusters while
demanding less message overhead.
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Introduction
In many systems that are common in virtual contexts, such as peer-to-peer systems, e-
commerce, and the grid, elements act in an autonomous and flexible way in order to meet
their goals. Such systems can be molded as open, dynamic multi-agent systems (MASs)
[1]. In open, dynamic MASs, agents can represent software entities or human beings.
Agents can come from any setting with heterogeneous abilities, organizational relation-
ships, and credentials. Furthermore, the decision-making processes of individual agents
are independent of each other and agents can join or leave the system. As each agent has
only bounded abilities, it may need to rely on the services or resources of other agents
in order to meet its objects [2]. Agents cannot take for granted that other agents share
the same core beliefs about the system or that other agents make accurate statements
regarding their competencies and abilities. In addition, agents must accept the possibility
that others may intentionally spread false information, or otherwise behaving in a harm-
ful way, to meet their own aims [3]. Therefore, trust evaluating agents, also referred to
as trusters (TRs), should use a trust estimation model that allows them to recognize reli-
able partners in their systems. The estimated assessment should be sufficiently accurate
to allow TRs, to distinguish honest trustees (TEs) in the system. In open MAS, the trust
evaluation model should not rely on centralized entities but should dynamically update
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the agents’ knowledge sets to take into account new characteristics of the environment.
The failure or takeover of any agent must not lead to the failure of the whole system.
TRs use trustworthiness estimation to resolve some of the uncertainty in their interac-

tions and form expectations about the behaviors of others [3]. Trust has been defined in
many ways in different domains [1]. For this work the definition used in [4] for trust in
MASs, will be adapted. A TE’s trustworthiness is considered as a measurement of the TE’s
possibility to do what it is supposed to do.
Unlike most trust models, DTMAS defines a scalable way to locate a set of witnesses,

where there exist a network structure, to consult for indirect trust information. Themodel
uses of a semi-hierarchical structure forMASs, coupled with the notion of the small world
networks [5] and the concept of contacts [6]. Furthermore, a suspension technique is
used and combined with reinforcement learning (RL) to improve the model responses to
dynamic changes in the system. This parameter is used to address the short-term relation-
ship between a TR and the TE under consideration. It helps the TR to address a recently
malfunctioning TE that used to be honest for a relatively large number of transactions.
The idea is that a TR will stop interacting with a misbehaving trustee immediately, and
wait utile it is clear whether this misbehavior is accidental or it is a behavioral change.
Because the suspension is temporary, and because TR uses information from witnesses,
the effect of accidental misbehavior will phase out, but the effect of a behaviour change
will be magnified.

Background and related work
Reinforcement learning (RL)

The reinforcement learning attempts to solve the problem of learning from interaction to
achieve an object. An agent starts by observing the currents state s of the environment,
then performs an action on the environment, and later on receives a feedback r from the
environment. The received feedback is also called a reinforcement or reward. Agents aim
to maximize their cumulative reward they receive in the end [7].
There are three well-known, fundamental classes of algorithms for solving the rein-

forcement learning problem, namely dynamic programming, Monte Carlo, and temporal-
difference (TD) learning methods [7]. Unlike other approaches, TD learning algorithms
can learn directly from experience without amodel of the environment. TD algorithms do
not require an accurate model of the environment (contrary to Dynamic Programming)
and are incremental in a systematic sense (contrary to Monte Carlo methods). However,
unlike Monte Carlo algorithms, which must wait until the end of an episode to update the
value function (only then is the return r known), TD algorithms only need to wait until
the next time step. TD algorithms are thus incremental in a systematic sense [7].
One of the most widely used TD algorithms is known as the Q-learning algorithm.

Q-learning works by learning an action-value function based on the interactions of an
agent with the environment and the instantaneous reward it receives. For a state s, the Q-
learning algorithm chooses an action a to perform such that the state-action valueQ(s, a)
is maximized. If performing action a in state s produces a reward r and a transition to
state s′, then the corresponding state-action value Q (s, a) is updated accordingly. State
s is now replaced by s′ and the process is repeated until reaching the terminal state [7].
The detailed mathematical foundation and formulation, as well as the core algorithm of
Q-learning, can be found in [8] therefore it is not repeated here.
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Q-learning is an attractive method of learning because of the simplicity of the compu-
tational demands per step and also because of proof of convergence to a global optimum,
avoiding all local optima, as long as the Markov Decision Process (MDP) requirement is
met; that is the next state depends only on the current state and the taken action (it is
worth noting that the MDP requirement applies to all RL methods) [9].
Clearly, a MAS can be an uncertain environment, and the environment may change any

time. Reinforcement learning explicitly considers the problem of an agent that learns from
interaction with an uncertain environment in order to achieve a goal. The learning agent
must discover which actions yield themost reward via a trial-and-error search rather than
being told which actions to take as in most forms of machine learning. It is this special
characteristic of reinforcement learning that makes it a naturally suitable learningmethod
for trust evaluating agents in MASs. Furthermore, the suitability of RL can also be seen
if we note that a TR observes the TEs, selects a TE, and receives the service from that
TE. In other words, these agents get some input, take an action, and receive some reward.
Indeed, this framework is the same framework used in reinforcement learning, which
is why we chose reinforcement learning as a learning method for our proposed agents
model [10].

Related work

A wide variety of trust and reputation models have been developed in the literature. Dif-
ferent dimensions to classify and characterize computational trust and reputation models
were presented in different surveys [11]. One of the most cited and used general purpose
surveys is the one developed by Sabater and Sierra [12]. Their dimensions of analy-
sis were prepared to enhance the properties of the Regret model [13] and show basic
characteristics of trust models [11]. The dimensions proposed in [12] are:

• Paradigm type, where models are classified as cognitive and numerical. The numerical
paradigm includes models that do not have any explicit representation of cognitive
attitudes to describe trust. On the other hand, cognitive paradigm includes models in
which the notion of trust or reputation is built on beliefs and their degrees [11].

• Information sources where a set of models use direct experiences while other models
use third-party testimonials from other agents in the same environment, refered to as
witness. Yet, others depend on the analysis of social relations among the agents [11].

• Visibility, where the trust information of an agent is be considered a private property
that each agent build or a global property that all other agents can observe.

• Granularity, which refers to the context-dependence of trust and reputation models.
• Cheating behavior, which refers to the models’ assumptions regarding information

from witnesses. According to [12] a model may assume that witnesses are honest, or
that witnesses may hide information but never lies or, alternatively, that witnesses
can be cheaters.

• Type of exchanged information, where information assumed to be either boolean, or
continuous estimations.

In addition to the those dimintions, [11] added the procedural dimension to reflect
weather or not a bootstrapmechanizime is embeded within the model. Furthermore, they
introduced generality dimension to classify models that are general purpose versus the
ones that focus on very particular scenarios.
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Form architectural point of view, [11,14-16], among others, differentiated between cen-
tralized and distributed models. Typically, a central entity manage the reputation of all
agents in the first approach, but each agent performs its trust estimations without a cen-
tral entity in the second approach [16]. Decentralized systems may use flat or hierarchical
architectures. Generally speaking, decentralized models are more complex than central-
ized models. But Single point of failure and performance bottleneck are major concerns
for centralized models [17]. centralized models are subject to single point of failure and
need powerful and reliable central entities and communication bandwidth [16].
Witnesses locating dimension was described in [14] to reflect weather or not a mech-

anism is embedded within the model for locating third party information sources. Few
general purpose trust, such as FIRE [15] use a distributed approach for this purpose.
This section reviews a selection of decentralized models, and not meant to provide

a comprehensive survey of trust modeling literature in MASs. Recent surveys such as
[2,11,14] provide further detailed overview of the literature.
A decentralized, subjective, RL based trustworthiness estimation model for buying and

selling agents in an open, dynamic, uncertain and untrusted e-marketplace is described in
[18] and further elaborated in [7]. This model is based on information collected from past
direct experiences where buyers model the trustworthiness of the sellers as trustworthy,
untrustworthy and neutral sellers. A buying agent chooses to purchase from a trustworthy
seller. If no trustworthy seller is available, then a seller from the list of non-untrustworthy
sellers is chosen. The seller’s trustworthiness estimation is updated based on whether the
seller meets the expected value for the demanded product with proper quality. The update
process is maintained after comparing the obtained information about the reliability of a
seller against the obtained product quality from the same seller. The model described in
[7,18], uses some certain thresholds set to categorize TEs to trustworthy and untrustwor-
thy agents. TRs do not interact with the untrustworthy TEs and among the trustworthy
ones, TEs with the highest values are selected as interaction partners. The information
is based on TR’s personal interaction experience, so the new entry TR has lack of knowl-
edge about different TEs. This model has limited applicability, if repeated transactions
between traders are rare [19].
A decentralized, subjective, extension to the model used in [18] is describe in [20,21],

to enable indirect trustworthiness based on third party witnesses in e-marketplace. In
this model, witnesses are partitioned into trustworthy, untrustworthy and neutral sets
to address buyers’ subjectivity in opinions. However, the authors did not present any
experimental results to justify their theoretical approach [22].
A combinedmodel based on direct and indirect trustworthiness estimation is described

in [23] as an extension to [20,21] where advising agents are partitioned into trustworthy,
untrustworthy and neutral sets. To address the subjectivity of witnesses, the mean of the
differences between the witness’s trustworthiness estimation and the buyer’s trustworthi-
ness estimation of a seller is used to adjust the advisory’s trustworthiness estimation for
that seller. Nevertheless, how witnesses are located was not specified.
All those RL based modes [18,21] and [22] classify TEs into three non overlapping sets

namely trusted, distrusted, and neutral, also referred to as neither trusted nor untrusted
[18]. Similarly, the computational model of [24], classifying TEs as trusted, distrusted or
untrusted, where the last one means neither trusted nor distrusted. The authors extend
the model of [25] and enriched their model with the use of regret and forgiveness to
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aid TRs classifying TEs. Their trust estimation at time instance t + 1 depends of the
current estimation (at time t) and a forgiveness function. The forgiveness function, in
turn, depends on both the regret the TR has because it trusted a TE that does not fulfill
its needs, and the regret that the corresponding TE express, if any, for not satisfying the
demand of the TR. However, this later factor, the regret of the TE, can be misleading if
the TE communicate false regret value. The model does not use third party witnesses.
TRAVOS [26] is a well-known decentralized, general purpose trustworthiness estima-

tion model for MASs. The model depends on beta distributions to predict the likelihood
of honesty of a TE [19]. If the TR’s confidence in its evaluation is below a predefined
threshold, the TR seeks advices from witnesses. In TRAVOS, trust is a private and subjec-
tive property that each TR builds. The model computes the reliability of witnesses via the
direct experience of interaction between the TR and witnesses, and discards inaccurate
advices [4]. Unfortunately, it takes certain time for the TR to recognize the inaccuracy of
the provided reports from the previously trusted witness agents [4]. The model does not
describe how witnesses are located.
Regret [13] is a decentralized, general purpose trustworthiness estimation model for

open MASs that takes into account direct experiences, witness information and social
structures to calculate trust, reputation and levels of credibility [11]. The model assumes
that witnesses are willing to cooperate, and depends on social networks among agents
to find witnesses, then uses a set of fuzzy rules to estimate the credibility of witness and
therefore there testimonies [2]. Even though the model heavily depends on agents’ social
networks, it does not show how TRs may build them [15].
Yu and Singh [27], presented a decentralized, subjective trustworthiness estimation

model where a TR estimates the trustworthiness of a TE using both its own experience,
and advices from witnesses. The model use social network concepts in MASs, where it
incorporates for each agent a TrustNet structure. Each agent in the system maintains a
set of acquaintances and their expertise. The set of neighbors is a subset of the acquain-
tances set. The model locate witnesses based on individual agents’ knowledge and help
through each agent’s neighbors without relying on a centralised service [15]. Thus, when
looking for a certain piece of information, an agent can send the query to a number of its
neighbors who will try to answer the query if possible or, they will refer the requester to a
subset of its neighbors [15]. The requester considers the information only if the referred
witnesses are whiten a limit in the social tree [11]. To address the subjectivity of witnesses,
agents model acquaintances expertise [27]. An agent’s expertise is then used to determine
how likely it is to have interaction with or to know witnesses of the target agent [15]. The
model uses Dempster Shafer evidence theory to aggregate the information from different
witnesses.
FIRE [15] is a well-known, general purpose, decentralized, trustworthiness estimation

model for open MASs. The model takes into account multiple sources of information.
FIRE categorizes trust components into four categories; direct experience called Interac-
tion Trust, Witness Reputation, Role-based Trust and Certified Reputation. The model
assumes that witnesses are honest and willing to cooperate and use weighted summation
to aggregate trust components [15]. In FIRE, trust is a private and subjective property that
each TR builds [11] .
To locate witnesses, FIRE uses a variant of the referral system used by [27], but does not

model witnesses experties the same way as in [27]. Instead, FIRE assumes that addressing
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subjectivity of witnesses is application dependent. To address resources limitations; the
branching factor and the referral length threshold parameters were used. The first used
to limit the breadth of search and the second is used to limit the depth of search [15]. An
important aspect of FIRE is that a TR does not it does not create a trust graph, as in [27],
and therefore may quickly evaluates the TE’s trust value using a relatively small number
of transactions [4]. Unfortunately, if a TE proposes some colluding referee for certified
reputation, this source of information and be misleading to the TR [4].
To address the subjectivity of witnesses, most models allows a TR to evaluate the

subjectivity of witnesses simply based on their deviations from its own opinions [28].
Most models of trustworthiness estimation allow the communication of trustworthiness
information regardless of their contexts, even though trustworthiness estimations are
context-dependent [28]. A functional ontology of context for evaluating trust (FOCET),
a context-aware trustworthiness estimation model for multi-agent systems, is described
in [28] to address the case where a TE may offer different kinds of services in different
contexts. These contexts might be totally different or have some features in common.
To measure the effect of a particular context, two individual metrics were defined: 1)

a weight matrix (WM) that includes the importance level of each feature of context; and
2) a relevancy matrix (RM) that indicates the degree of similarity of each feature in the
first context with the corresponding one in the second context. The WM is a 1∗n matrix,
where n is the number of FOCET context features and matrix entry wi is in [0, 1]. The
RM is an n∗1 matrix where matrix entry vi is in [0, 1] and refers to the degree of impor-
tance of the corresponding feature. For example, an agent, called B1, may consider the
“fast-enough” delivery of a specific transaction very important and uses 0.9 as the cor-
responding value in its WM. Similarly, another agent, called B2, may also consider the
“fast-enough” delivery of another transaction very important and uses 0.9 as the corre-
sponding value in its WM. However, for B1, “fast enough” means: within one week. On
the other hand, for B2, “fast enough” means: within one day. Therefore, B1 will use a lower
value for “delivery time” feature in its RM (e.g. 0.2) whereas, B2 will use a higher value for
“delivery time” feature in its RM (e.g. 0.7).
Given the WM and RM matrixes, the influence of the context of the direct interaction

between the witness agent and the TE in which the trustworthiness of the TE is estimated,
known as the context effect factor (CEF), is computed in [28] by

CEF =
∑n

i=1(1 − wi) + wi ∗ vi
n

(1)

TRs subjectively specify a degree of decay p (0 ≤ p ≤ 1) that is based on their poli-
cies in order to reduce the influence of the old trustworthiness estimation information
adaptively. Time decaying is used to emphasize that utility gain (UG) from recent trans-
action weigh more compared to UG from old transactions if they have the same absolute
value [28].

CEF
′ = e(−p�t)CEF (2)

where �t indicates the time elapsed since previous interactions took place and can be
determined according to the temporal factor concept in FOCET.
A common issue with RL based trust models that TRs do not quickly recognize the envi-

ronment changes and adapt with new settings. To address this shortcoming, DTMAS uses
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a technique similar to regret described in [24] in order to improve the model responses
to dynamic changes in the system. We propose suspending the use of a TE as a response
to unsatisfactory transaction with the TE. The suspension is temporary, and its period
increases as the transaction importance increases. Similar to regret [24], it represent an
immediate reaction of a TR when it is not satisfied with an interaction with a TE. How-
ever, unlike the use of regret in [24], TRs do not depend of any expressed feel of sorry
from TEs. Furthermore, suspension is more aggressive. No interactions with suspended
TEs as long as it is suspended. On the other hand, while forgiveness is used to reduce
the effect of regret in [24], our suspension decays with time only. This is to avoid being
mislead by false feel of sorry expressed by the TE, and to allow the effect of accidental
misbehavior to phase out, and to magnify the effect of a behavior change as testimonies
form witnesses are aggregated. Furthermore, DTMAS integrates context-dependency of
third party testimonies [28] together with reinforcement learning for MASs. Similar to
[13,15,27] DTMAS defines a way to locate a set of witnesses to consult for indirect trust
information. Like [15], using DTMAS a TR does not create a trust graph, as in [27],
and therefore may quickly evaluates the TE’s trust value using a relatively small number
of transactions. Unlike existing trust models, DTMAS uses of a semi-hierarchical struc-
ture for MASs, coupled with the notion of the “small world” [5] to help reducing the
communication overhead associate locating witnesses.

Framework
In this section, we will outline some general notation, and outline the necessary compo-
nents and assumptions we make about the underlying trust estimation model, which we
will use in the remainder of this work. For the complete list of abbreviation terms used in
this study, please see Table 1.

Agent architecture

Based on the agent’s architecture described in [29], we assume that each agent has an
embedded trust management module. This module stores models of other agents and
interfaces both with the communication module and the decision selection mechanism.
The subcomponents of the trust management module, in compliance with [29], are listed
in the following:

• Evaluate: This component is responsible for evaluating the trustworthiness of other
agents using different information sources such as direct experience and witness
testimonies. Trust models described in [13,15,18,26,27] are well-known models that
belongs mainly to the evaluation component. The proposed DTMAS belong is a trust
evaluation model.

• Establish: This component is responsible for determining the proper actions to
establish the agent to be trustworthy to others. The work of Tran, et al. [30] is an
example of a model designed mainly to address this component.

• Engage: This component is responsible for allowing rational agents to decide to
interact and engage others with the aim of estimating their trustworthiness. In the
literature, this component is usually referred to as trust bootstrapping and cold start
problem. Bootstrapping Trust Evaluations Through Stereotypes [31] is an example
model that belongs mainly to this component.
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Table 1 Abbreviations

Abbreviation Description

A Society of Agents

AD Honest witness

BSI Basic Suspension Interval

D Depth

DT The direct trust estimation

DTMAS Decentralized Trustworthiness Estimation Model for Open, Multi-agent Systems

FOCET Functional Ontology of Context for Evaluating Trust

FT Fraudulent Threshold

HT Honesty Threshold

IT The Indirect Trust estimation

IV Transaction Importance

MANET Mobile Ad-hoc NETwork

MAS Multi-agent System

MC Monte Carlo

MDP Markov Decision Process

PNT The reduction fraction of the reported trust

r rating

RF Referee

RL Reinforcement Learning

RM Relevancy Matrix

RT Reported Trust

ST Satisfactory Threshold

SUS Suspension penalty

T Set of possible tasks

TD Temporal-difference

TE Trustee

TR Truster

TRAVOS Trust and Reputation in the Context of Inaccurate Information Sources

IT Integrated Trustworthiness Estimation

UG Utility Gain

TD Temporal-difference

WDT Witnesses Differences Threshold

WFT Witnesses Fraudulence Threshold

WHT Witnesses Honesty Threshold

WM Weight Matrix

ZRP Zone Routing Protocol

• Use: This component is responsible for determining how to select prospective
sequences of actions meant on the trust models of other agents that have been
learned. The model described in [32] is an example model that belongs mainly to this
component.

Agents and tasks

We assume a society of agents, A = {a1, a2, ...} which is referred to as the global society.We
assume a set of possible tasks T = {s1 , . . . , sn} . The nature of tasks in T are application
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dependent. A TR that desires to see some task accomplished, considers depending on a
trustee to perform the task on its behalf [32].
Agents can communicate with each other in a distributed manner. No central entity

exists to facilitate trust-related communications. No service level agreement or contract
exists between TRs and TEs. We assume that witnesses are willing to cooperate.

DTMAS
Architectural overview of DTMAS

Finding the set of witnesses that previously interacted with a specific TE, in a pre-request
before a TR can use indirect estimation for the trustworthiness of the TE. While many
decentralized trust models offer a variety of approaches for trustworthiness estimation,
few of them define how to locate the set of witnesses to contact for indirect trust informa-
tion, and simply assume the availability of this set. Even though a simple broadcast may
be used for this purpose, the overhead associated with that may limit the scalability of the
model.
We propose the use of a semi-hierarchical model for MASs influenced by Zone Rout-

ing Protocol (ZRP)[33], coupled with the notion of the small world networks [5] and the
concept of contact [6]. In the context of Mobile Ad-hoc NETworks (MANETs), the ZRP
defines a zone for each node as the number of nodes reachable within a radius of R edges
(links or hops in MANETs’ terminology). Nodes obtain routes to all nodes within their
zone in a proactive approach. A reactive routing approach is employed to discover routes
to nodes outside a zone [33]. It was suggested in [5] that introducing a small amount of
long-range edges is enough to make the world “small”, while having short paths between
each pair of nodes. In the context of MANETs, [6] suggested the use of a few nodes away
from the querying node, which act as shortcuts to convert a MANET into a ‘small world’.
He referred to those nodes as contacts of the querier.
In the architecture of DTMAS, a zone is defined for each TR as the number of neigh-

boring agents within a radius of R edges. Each TR broadcasts to its neighbors within its
zone that it has interacted with a TE whenever such interaction takes place for the first
time. This information can be refreshed periodically, or when a change takes place; e.g.,
when the agent moves into a different neighborhood. Therefore, each TR knows which of
its neighboring agents interacted with a particular TE(s). If a TR did not find proper infor-
mation locally, the TR starts searching outside its zone through its contacts. For DTMAS,
contacts are a few agents away from the querying agents, which act as shortcuts to con-
vert a MAS into a small world in order to help the querying agents in locating witnesses,
if any. This is useful for highly dynamic systems where agents may change their loca-
tions frequently and/or agents frequently enter and leave the system. To alleviate potential
overhead and enhance the scalability of the model, a TR can use a number of “contacts”,
typically far away from itself, to inquire instead of inquiring every node in its neighbor-
hood and the query may be forwarded up to a maximum number of agents called search
depth. This has a similar effect to the use of branching factor in Yu and Sing model [27]
and in FIRE model [15]. After the presentation of the trustworthiness estimation in sub-
section “Trustworthiness estimation”, the algorithm for locating witnesses is presented in
subsection “Locating witnesses” followed by the algorithm for selecting contacts in sub-
section “Selecting contacts”. Both the number of contacts and the search depth, explained
in subsection “Locating witnesses”, can be used to control overhead, in the MAS.
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Trustworthiness estimation

Q-learning based trustworthiness estimation is deemed suitable for uncertain environ-
ments in an electronic marketplace where agents discover which actions yield the most
satisfying results via a trial-and-error search [34]; therefore, we make use of Q-learning
for trustworthiness estimation in DTMAS, for simplicity, we will use RL to refer to
Q-learning in this work.
In addition to the use of RL for trustworthiness estimation and the integration of direct

and indirect trust estimation without assuming the honesty of witnesses, we propose
the integration of a suspension technique to enhance the model responses to dynamic
changes in the system.
Employing DTMAS, a TR implement immediate, temporary suspension of the use of a

TE if a transaction results in an unsatisfactory result for the TR. The suspension period
increases as the transaction importance of the unsatisfactory transaction increases. The
objective is to reduce the side effects associated with a TE that built a good reputation, and
then, for some reason, began to misbehave. However, suspension should be temporary to
avoid excluding a good TE that accidently misbehaved.
If an honest witness a1 considers a TE as suspended, according to direct transaction

between a1 and TE, then, whenever a TR consults a1 about TE during the suspension
period, a1 will report the trustworthiness estimation of TE as -1 (the lowest limit of
possible credibility). Furthermore, an honest witness A will reduce the reported trust-
worthiness estimation of a TE after the end of the suspension period. This reduction is
inversely proportional to the time elapsed since the end of suspension. In other words,
the reported trustworthiness estimation of a TE will equal the calculated trustworthi-
ness estimation of the TE, based on the history of interaction between a1 and TE, minus
a penalty (i.e. punishment) amount related to time elapsed since the end of suspension
period.
When considering the credibility of witnesses, a suspension policy similar to the one

implemented in the direct trust component of the model is used. That is, a TR will sus-
pend the use of any witness whose advice is the opposite of the actual result of interaction
with the TE. The suspension period increases as the transaction importance increases.
Initially all witnesses are considered neutral. In case no witness found the TR depends on
the direct experience component alone. The default value of the direct trust value of a TE
is the neutral value. Zero is used as the neutral value in DTMAS.
When a TR wants to interact with a TE at time t, the TR avoids any TE that is untrust-

worthy or suspended and estimates the trustworthiness of TEs using integrated direct
and indirect trust components, but avoids the advice of all untrustworthy or suspended
witnesses. Then, the TR selects the TE that maximizes its UG of the interaction subject
to the constraint that the integrated trustworthiness estimation of the TE is not less than
a satisfactory threshold (ST).

Integrated trustworthiness estimation TT(TR,TE)

The trust equation we are interested in should take into consideration TRs’ direct trust
of TE(s), testimonies from witnesses, subjectivity in witnesses’ opinions and credibility of
witnesses. Therefore, the total trust estimate can be calculated using Eq (3).

TT(TR, TE) = x ∗ DT(TR, TE) + (1 − x) ∗ IT(TR, TE) (3)
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• DT(TR,TE) is the direct trust estimation component of the TR for the TE.
• IT(TR,TE) is the indirect trust estimation component of the TR for the TE.
• x is a positive factor, chosen by the TR, which determines the weight of each

component in the model.

Direct trustworthiness estimation DT(TR, TE)

TRs use RL to estimate the direct trust of TEs in a way similar to the process in [7]. If the
TR is satisfied by the interaction with the TE, Eq. (4) is used to update the credibility of
the TE as viewed by the TR.

DTt(TR, TE) = DTt−1(TR, TE) + α (1 − |DTt−1(TR, TE)|) (4)

• DTt(TR, TE) is the direct trust estimation of the TE by the TR at instant Timet .
• The cooperation factor α is positive (1> α > 0) and the initial value of the direct

trustworthy estimation is set to zero.

The value of DT(TR, TE) varies from -1 to 1. A TE is considered trustworthy if the
trustworthiness estimation is above an honesty threshold (HT), which is similar to the
cooperation threshold in [24]. The TE is considered untrustworthy if the trustworthiness
estimation value falls below a fraudulent threshold (FT), which is similar to the forgive-
ness limit in [24]. TEs with trustworthiness estimation values between the two thresholds
are considered neutral.
If the TR is not satisfied by the interaction with the TE, Eq. (5) is used to update the

credibility of the TE as viewed by TR.

DTt(TR, TE) = DTt−1(TR, TE) + β (1 − |DTt−1(TR, TE)|) (5)

• β is a negative factor called the non-cooperation factor (0> β > -1).

Furthermore, the TR suspends the use of the TE for a period of time determined by
equation (6).

SUSt(TE) = SUSt−1(TE) + BSI ∗ IV (6)

• SUSt(TE) is the suspension penalty associated with the TE at instant Timet .
• The basic suspension interval (BSI) is application dependent, and could be days in an

e-marketplace or seconds in a robotics system that has a short life time.
• The transaction importance (IV) is how much the TR values the transaction, not the

actual utility gain of the interaction.

We believe that the cooperation and non-cooperation factors are application dependent
and should be set by each agent independently. In general, we agree with [7] that the
factors should be related to the value gain of the transaction.
When a TR wants to interact with a TE at instant Timet , the TR avoids any TE that is

untrustworthy (i.e., DTt(TR, TE) < FT) or suspended (i.e., SUSt(TE) > Timet).

Indirect trustworthiness estimation

To estimate indirect trust, a TR consults other witnesses who interacted previously with
the TE. To adopt different context elements with different importance levels relating to
their subjective requirements and environmental conditions, FOCET [28] will be used.
An overview of FOCET is presented in subsection Related work.
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To reduce the effect of fraudulent and outlying witnesses, a TR excludes reports from
any witness where the mean of the differences between the witness’s trustworthiness
estimation and the TR’s trustworthiness estimation of TEs other than the one under
consideration is above the witnesses differences threshold (WDT).
To protect the model from attacks in which a TE would obtain some positive ratings

and participates in a bad interaction that actually causes large damage, the importance of
transactions is considered when estimating the trust. An honest witness AD reports its
testimony (RT) about a TE as

RT(AD,TE) =
∑NI

tr=1
(
CEF ′

tr ∗ IVtr ∗ UGtr
)

MaxUG ∗ ∑NI
tr=1

(
CEF ′

tr ∗ IVtr
) ∗ PNT (7)

• PNT=(1-DD(AD,TE)).
• DD (AD, TE) is the reduction fraction of the reported trust of TE because of previous

suspension(s).
• DD= 0 if TE has never been suspended previously; otherwise

DD = SUS(TE)/Age(AD).
• NI is the number of transactions between the AD and the TE,
• CEF’ is the decay factor applied to the CEF. as calculated by equation 2.
• UGtr is the utility gain of the transaction tr with the TE
• and MaxUG is the maximum possible UG of a transaction. Obviously, MaxUG is

application dependent.

A TR will calculate the indirect trust (IT) component as

IT(TR, TE) =
∑N

i=1 RT (ADi, TE)

N
(8)

• N is the number of trustworthy witnesses.
• RT (ADi, TE) is the testimony of witness i about TE

Each TR updates its rating for the witnesses after each interaction as follows:

• If the transaction was satisfactory for the TR and the witness AD had recommended
TE or If the transaction was NOT satisfactory and AD’s opinion was “not
recommend”, then the trustworthiness estimation of witness AD is incremented by

DT(TR, AD) = DT(TR, AD) + γ (1 − |DT(TR, AD)|) (9)

• Otherwise, the trustworthiness estimation of AD is decremented by

DT(TR, AD) = DT(TR, AD) + ζ (1 − |DT(TR, AD)|) (10)

Furthermore, the TR suspends the use of the witness for a period of time determined by

SUSt(AD) = SUSt−1(AD) + WBSI ∗ IV (11)

• γ and ζ are positive and negative factors respectively and chosen by the TR as
cooperation and noncooperation factors.

• SUSt(AD) is the suspension penalty associated with AD at time instant t
• As with the BSI, the Witnesses Basic Suspension Interval (WBSI) is application

dependent.
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• Transaction importance (IV) is the how much the TR values the transaction, not the
actual UG of the interaction.

• SUSt(AD) is decremented by one each time step. However, it can not be less than
zero.

The value of DT (TR, AD) varies from -1 to 1. A witness is considered trustworthy
if the trustworthiness estimation is above the witnesses honesty threshold (WHT). A
witness is considered untrustworthy if the trustworthiness estimation falls below the wit-
nesses fraudulence threshold (WFT). Witnesses with trustworthiness estimation values
in between the two thresholds are considered neutral.
When a TR wants to interact with a TE at instant Timei, the TR avoids any AD that is

untrustworthy or suspended.

Locating witnesses

Algorithm 1Witnesses Locating Algorithm
1. The TR (A) sends a witnesses-locating request to its contact agents
2. The request contains the depth of search (D).
3. Upon receiving the request, each contact (Ci ) checks the value of D.

(a) If D > 1, the contact agent decrements D by 1 and forwards the request to
all its contacts.

(b) If D is equal to 1, Ci sends to A the set of witnesses in its zone (if they exist).

4. The reply takes the reverse path of the request.
5. As the reply travels back to A, each intermediate contact agent on the way to A

appends the list of witnesses in its zone that match the request.

A TR can use Algorithm 1, to find witnesses who interacted previously with a TE. The
algorithm is inspired by the routing protocol for MANETs in [35]. The TR a first initiates
the witnesses locating request with search depth D1 = initial_value to its contacts, if it
does not receive satisfying feedback within a specified time, it creates a new request with
Di = 2*Di-1 and sends it again to its contacts. Each contact observes that Di �= 1, reduces
the value of Di in the request by 1 and forwards it to its contacts that serve as second-
level contacts for a. In this way the request travels through multiple levels of contacts
until D reduces to 1. Depending on the quality of the provided information (if any), a
may choose to continue searching for other alternatives probably with larger D up to a
predefined upper level for D. In this way the value of D is used to query multiple levels of
contacts in a manner similar to that of the expanding ring search. However, this would be
more efficient than a system-wide broadcast search as the request is directed to individual
agents (the contacts).
In addition to the described mechanism for locating witnesses, a TR can request

the TE to provide a list of referee agents where a referee RF of a TE; is a TR
that previously interacted with TE, and willing to share its experience with other
TRs.
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Selecting contacts

Each TR can decide on the number of contacts K to use depending on how cautious
the agent is, how important the interaction is, and how much resources the agent has.
To reduce the maintenance overhead, contacts can be selected dynamically, when a TR
requests an advice on a TE using the Contacts Selection Algorithm (Algorithm 2).

Algorithm 2 Contacts Selection Algorithm
1. If positional information is available for agents: The TR (A) views the area around

itself as a set of sectors each with angle equal 2π/K

(a) A border agent Bi is a TR that is R hops from A. Agent A determines the
sector in which Bi is located as the sector of the angle tan−1(�Y/�X) where
�Y is the vertical difference between Bi and A, and �X is the horizontal
difference between Bi and A.

(b) Then, for each sector, agent A selects a “non-untrustworthy” and
“non-suspended” border agent Bi in the sector that maximize the distance
Bi-A = √

(YBi − YA)2 + (XBi − XA)2

(c) Each Bi will select a “non-untrustworthy” and “non-suspended” border agent
Cj such that Cj is located in the same sector as Bi from the point of view of
A, and Cj maximize the distance Cj-A= √

(Yci − YA)2 + (XCi − XA)2

2. If positional information is not available for agents: We use an algorithm adapted
from [35].

(a) The querying agent (A) select a number of “non-untrustworthy” and
“non-suspended” border nodes equal to the number of contacts (K), such
that the querying agent (A) has disjoint paths to border agents.

(b) Each selected border agent Bi then selects “non-untrustworthy” and
“non-suspended” border agent Cj such that Cj has the maximum number of
hops to A and Bi has disjoint paths to both Cj and A with the hope to
reducing the overlap between areas covered by different contacts

3. If the querying agent (A) cannnot select the required number of contacts by either
alternative 1 or alternative 2

(a) Requesting agent (A) randomly select a number of “non-untrustworthy” and
“non-suspended” agents from its zone to satisfy the number of contacts K.

(b) Each randomly selected agent Bi randomly selects a “non-untrustworthy”
and “non-suspended” agent Cj from its zone as the contact for A.

Performance analysis
It is often difficult to find suitable real world data set for comprehensive evaluation of
trust models, since the effectiveness of various trust models needs to be assessed under
different environmental conditions andmisbehaviors [2]. Therefore, in trust modeling for
MASs research field, most of the existing trust models are assessed using simulation or
synthetic data [2]. One of the most popular simulation test-beds for trust models is the
agent reputation and trust (ART) test-bed proposed in [36]. However, even this test-bed
does not claim to be able to simulate all experimental conditions of interest [2].
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Simulation environment

We use simulation to evaluate the performance of the proposed model for dis-
tributed, multi-agent environment using the discrete-eventmulti-agent simulation toolkit
MASON [37] with TEs, as agents that provide services, and TRs, as agents that consume
services. As with [15], we assume that the performance of a TE in a particular service is
independent from that in another service. Therefore, without loss of generality, and in
order to reduce the complexity of the simulation environment, it is assumed that there
is only one type of service in the system simulated and all trustees offer the same service
with, possibly, different performance. In order to study the performance of the proposed
trust model for TE selection, we compare the proposed model with the well known FIRE
trustmodel [15], one of the well-known trustmodels forMASs and among the fewmodels
that define a mechanism to locate witnesses.
All agents are placed randomly in a rectangular working area. Each TR has a radius of

direct communication to simulate the agent’s capability in interacting with others and all
other agents in that range are direct neighbors of the TR. The simulation step is used as
the time value for transactions. Interactions that take place in the same simulation step are
considered simultaneous. TRs evaluate the trustworthiness of the TE(s), and then select
the one that promise the maximum transaction importance. Locating TEs is not part of
the trust model; therefore TRs locate TE(s) through the system. Table 2 gives the number
of agents, the dimensions of the working area and other parameters used for DTMAS
and those used for the environment. FIRE-specific parameters are similer to those used
in [15].
Having selected a provider, the TR then uses the service and gains some benefits from

the interaction. This benefit is referred to as UG. A TE can serve many users in a single
step, and all TRs attempt to use the service in every step. For DTMAS, after each inter-
action, the TR updates the credibility of the provider and the credibility of witnesses. We
did not consider the case where a TE can record all or part of the history of interactions
to be able to provide referee lists to other TRs upon request.
We consider a mixture of well behaving and poorly behaving TEs in addition to those

who alter their behavior randomly. Witnesses are categorized as agents who are honest,
agents who strictly report negative feedback, agents who strictly report positive feedback,
agents who report honestly with probability 0.5, or agents who strictly lie in that they
always report the opposite of their beliefs. TRs are associated with nine different context
categories randomly.
Since agents can freely join and leave, and theymay bemoving, the agent population can

be very dynamic and agents can break old relationships and make new ones during their
lifetimes. To address this, in our simulation, agents change their locations in the working
area. When a TR changes its location, it will have a new set of neighbors. Therefore,
changing an agent’s location changes its relationships with others, as well as its individual
situation.
In each step, TRs are assumed to move random distances between 0 and MaxMove in a

random direction between 0 and 2π . When they reach an edge of the working area, they
simply enter the working area from the opposite edge.
When bidding, an honest TE bids its UG category. This value is considered the trans-

action importance, whereas the UG of the interaction for the TR is the transaction
importance divided by the context category of the TR to address its subjectivity.
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Table 2 Values of used parameters

Parameter Value

Working area diminutions 1000 X 1000

Total number of TE 12

Total number of TR 81

Zone radius 3

Number of contacts 5

direct communication radius 100

MaxMove 707.1

Depth of contacts’ level 2

Number of TE changing behavior 7

Number of context categories 10

Basic suspension interval 10

Number of utility gain categories 9

Witnesses changing behavior 10

Witnesses always report negative 7

Witnesses always report positive 7

Witnesses report neutral 50% 7

Witnesses always lie 7

Maximum utility gain 10

Inerval of TE changing behavior 10

TE cooperation factor 0.01

TR non-cooperation factor -0.03

Witnesses cooperation factor 0.01

Witnesses non-cooperation factor -0.03

Direct trust fraction 0.5

Degree of decay 0.01

HT 0.5

FT -0.5

WHT 0.5

WFT -0.5

ST 0

WDT 0.5

FIRE -Specific Parameters

Local rating history size 10

DT recency scaling factor -(5/ ln(0.5))

Branching factor 2

Referral length threshold 5

Interaction trust coefficient 2

Role-base trust coefficient 2

Witness reputation coefficient 1

Certified reputation coefficient 0.5

Reliability function parameter: Interaction trust -ln(0.5)

Reliability function parameter: Role-base trust -ln(0.5)

Reliability function parameter: Witness reputation -ln(0.5)

Reliability function parameter: Certified reputation -ln(0.5)
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Experimental results

We analyze the performance of DTMAS in terms of UG, and the overhead of locating
witnesses, and we compare the performance of DTMAS with that of FIRE. However,
because FIRE assumes that witnesses are honest, we present the performance compari-
son of DTMAS with the use of honest witness as well as with the use of witnesses who
are not necessarily honest. We refer those two variates as “DTMAS - 2” and “DTMAS -
1” respectively.
Figure 1 shows that selecting TEs using DTMAS performs consistently better than FIRE

in terms of UG per agent, which indicates that DTMAS helps TRs select honest TEs
from the population and gain better utility than that gained using the FIRE model. This
is because DTMAS prefers TEs who have not been suspended for a longer time over
those who promise higher benefits but have been suspended within a shorter period, in
order to reduce the effect of a TE whose performance starts to reduce. DTMAS integrates
FOCET [28] to adopt different context elements with different importance levels relat-
ing to their subjective requirements and environmental conditions. Additionally, using
DTMAS, a TR excludes reports from any witness where the mean of the differences
between the witness’s trustworthiness estimation and the TR’s trustworthiness estimation
of TEs other than the one under consideration is above the witnesses differences threshold
(WDT).
Figure 2 shows the average communication overhead per transaction per agent, calcu-

lated as the total number of messages passing over all edges divided by multiplication of
the number of transactions by the number of TRs, when employing the witnesses locat-
ing strategy. The figure shows that DTMAS with contact-based architecture has lower
overhead than FIRE for locating witnesses. This is due to the contact selection strat-
egy, which attempts to reduce the overlapping of contacts’ zones. Suspending the use
of unreliable witnesses reduces the overhead associated with consulting a larger number
of witnesses, slightly as shown in the figure. It worth noting that the two variants of
DTMAS used in this study, the one with honest witnesses and the one with witnesses
who are not necessarily honest, achieve a comparable results in terms of average UG and
communication overhead. This indicates the ability of DTMAS to reduce the effect dis-
honest witnesses, and work in an environment where a subset of witnesses may provide
misleading information.

Figure 1 Average utility gain. Selecting providers using DTMAS performs consistently better than FIRE.
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Figure 2 Average overhead. DTMAS has lower overhead than FIRE for locating witnesses.

Conclusions and future work
This paper presented DTMAS; a scalable, decentralized model for trust evaluation. We
presented a generic architecture that reduces the overhead of locating witnesses, which
enhances the scalability of the architecture of the model. DTMAS allows direct and
indirect sources of trust information to be integrated, thus providing a collective trust
estimation. Additionally, we introduced a temporary suspension mechanism to reduce
the harm of misbehaving TEs and misbehaving witnesses. In short, we believe DTMAS
can provide a trust measure that is sufficiently useful to be used in an open and dynamic
MAS.
Dynamically determining parameter values such as the weight of each component in the

model (x), HT, FT, etc., enabling TEs to actively promote their honesty to allow new and
honest TEs to enter the system, and enhancing the scalability of the proposed architecture
are considered as future work.
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