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Abstract

Schemes for multi-party trust computation are presented. The schemes do not make
use of a Trusted Authority. The schemes are more efficient than previous schemes in
terms of the number of messages exchanged, which is proportional to the number of
participants rather than to its square. We note that in our schemes the length of each
message may be larger than themessage length typically found in previously published
schemes. The calculation of a trust, in a specific user by a group of community members
starts following a request by an initiator. The trust computation is provided in a
completely distributed manner, where each user calculates its trust value privately and
independently. Given a community C and its members (users) U1, . . . ,Un , we present
computationally secure schemes for trust computation. The first scheme, Accumulated
Protocol AP computes the average trust attributed to a specific user, Ut following a
trust evaluation request initiated by a user Un. The exact trust values of each queried
user are not disclosed to Un. The next scheme, Weighted Accumulated ProtocolWAP
generates the average weighted trust in a specific user Ut taking into consideration the
unrevealed trust that Un has in each user participating in the trust evaluation process.
The Public Key Encryption Protocol PKEP outputs a set of the exact trust values given by
the users without linking the user that contributed a specific trust value to the trust this
user contributed. The obtained vector of trust values assists in removing outliers. Given
the set of trust values, the outliers that provide extremely low or high trust values can
be removed from the trust evaluation process. We extend our schemes to the case
when the initiator, Un, can be compromised by the adversary, and we introduce the
Multiple Private Keys and the Weighted protocols (MPKP andMPWP) for computing
average unweighted and weighted trust, respectively. Moreover, the Commutative
Encryption Based Protocol (CEBP) extends the PKEBP in this case. The computation of all
our algorithms requires the transmission of O(n) (possibly large) messages.

Keywords: Private trust computations; Multi-party computations; Anonymity

Our contribution
The purpose of this paper is to introduce new schemes for decentralized reputation sys-
tems. These schemes do not make use of a Trusted Authority to compute the trust in a
particular user that is attributed by a community of users. Our objective is to compute
trust while preserving user privacy.
We present new efficient schemes for calculating the trust in a specific user by a

group of community members upon the request of an initiator. The trust computation is
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provided in a completely distributed manner, where each user calculates its trust value
privately. The user privacy is preserved in a computationally secure manner. The notions
of privacy and privately computed trust, are determined in the sense that given an out-
put average trust in a certain user, it is computationally infeasible to reveal the exact trust
values in this user, given by community users. We assume a community of users C =
{U1, U2, . . . ,Un}. LetUn be an initiator. The goal ofUn is to get an assessment of the trust
in a certain user, Ut by a group consisting of U1, U2, . . . ,Un−1 users from C. The AP cal-
culates the average trust (or the sum of trust levels) in the user Ut (Section ‘Accumulated
protocol AP’). TheAP protocol is based on a computationally secure homomorphic cryp-
tosystem, e.g., the Paillier cryptosystem [1], which provides a homomorphic encryption
of the secure trust levels T1, . . . ,Tn−1 calculated by each user U1, U2, . . . ,Un−1 from C.
The AP satisfies the features of the Additive Reputation System [2] and does not take into
considerationU ′

ns subjective trust values in the queried usersU1, U2, . . . ,Un−1. A decen-
tralized reputation system is defined as additive/non additive [2] if feedback collection,
combination, and propagation are implemented in a decentralized way, and if a combi-
nation of feedbacks provided by agents is calculated in an additive/non additive manner,
respectively. The WAP carries out a non additive trust computation (Section ‘Weighted
accumulated protocolWAP’). It outputs the weighted average trust which is based on the
trust given by the initiator Un in each C member participating in the feedback. TheWAP
is an enhanced version of theAP protocol. TheAP andWAP protocols cope with a curious
adversary and are restricted to the case of an uncompromised initiator, Un. The MPKP
andMPWP protocols, introduced in Section ‘Multiple Private Keys ProtocolMPKP’, use
additional communication to relax the condition that the initiator Un is uncompromised
and provide average unweighted and weighted privately computed trust, respectively.
Compared with the recent results in [2] and [3], our schemes have several advantages.

The Private Trust scheme is resistant against either curious or semi-malicious users
The AP and WAP protocols preserve user privacy in a computationally secure manner.
Our protocols cope with any number of curious but honest adversarial users. Moreover,
the PKEBP (Section ‘Protocols for removal of outliers’) is resistant against semi-malicious
users that return false trust values. The PKEBP supports the removal of outliers. The
general case, when the initiator, Un, can be compromised by the adversary, is addressed
by the MPKP, MPWP and CEBP (Sections ‘Protocols for removal of outliers’ and
‘Multiple Private Keys ProtocolMPKP’) protocols. Unlike our model, [2] suggests proto-
cols that are resistant against curious agents who only try to collude in order to reveal
private trust information. Moreover, the reputation computation in some of the algo-
rithms in [3] contains a random parameter that reveals information about the reputation
range of the queried users.

Low communicational overhead The proposed schemes require only O(n) size mes-
sages to be sent, while the protocols of [2] and [3] require O(n3) communication
messages.

No limitations on the number of curious users The computational security of the
proposed schemes does not depend on the number of curious users in the community.
Moreover, privacy is preserved regardless of the size of the coalition of curious users. Note
that the number of the curious users should be no greater than half of the community
users in the model presented in [2].
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Background and literature review
The use of homomorphic cryptosystems in general Multiparty Computation (MPC)mod-
els is presented in [4]. In [4] it is demonstrated that, given keys for any sufficiently
efficient homomorphic cryptosystem, general MPC protocols for n players can be devised
such that they are secure against an active adversary who corrupts any minority group
of the players. The problem stated and solved in [4] is as follows: given the encryp-
tions of two numbers, say a and b (where each player knows only its input), compute
securely an encryption of c = ab. The correctness of the result is verified. The total
number of bits sent is O(nkC), where k is a security parameter and C is the size of a
Boolean circuit computing the function that should be securely evaluated. An earlier
scheme proposed in [5] with the same complexity was only secure for passive adver-
saries. Earlier protocols had complexity that was at least quadratic in n. Threshold
homomorphic encryption is used to achieve the linear communication complexity in [4].
The schemes proposed in [4,6], and [7] are based on public key infrastructure and use
Zero Knowledge proofs (ZKP) as building blocks. When compared to [4,6], and [7] our
schemes privately compute the average unweighted (additive) and weighted (non additive)
characteristics, respectively, without using relatively hard-to-implement techniques such
as ZKP.
Independently, (though slightly later than [8,9]), linear communication MPC was pre-

sented in [10]. A perfectly secure MPC protocol with linear communication complexity
was proposed in [11]. Ourmodel presented herein, (with a semi-honest but curious adver-
sary) copes with at most n

2 − 1 compromised users that supply arbitrary trust values,
while [11] copes (in an information theoretic manner) with up to n

3 compromised users
(even totally malicious users) with a similar communication overhead, O(n3 · ln3). Here,
l denotes the total message length.
Following [8,9], privacy preserving protocols were investigated in [12] and [13]. Proto-

cols for efficient multi-party sum computation (in the semi-honest adversarial model) are
proposed in [12] and [13]. The derived protocols are augmented (by applying Zero Knowl-
edge Proofs of plaintext equality and set membership) to handle malicious adversary.
The simulation results demonstrate the efficiency of the designed methods. Compared
with our results, the most powerful and efficient StR protocol of [12] and [13] is based
on a completely connected network topology where each network user is directly con-
nected to all other users. In addition, the schemes of [12] and [13] can be applied in the
Additive Reputation Systems, while our schemes are designed also for the Non-Additive
Reputation System.
Homomorphic ElGamal encryption is used in [6] as part of a scheme for multi-party

private web search with untrusted partners (users). The scheme is based on multi-party
computation that protects the privacy of the users with regards to the web search engine
and any number of dishonest internal users. The number of sent messages is linear in
the number of users (each of the n users sends 4n − 4 messages). In order to obtain
a secure permutation (of N elements), switches of the Optimized Arbitrary Size Benes
network (OAS-Benes) are distributed among a group of n users, and the honest users
control at least a large function S(N) of the switches of the OAS-Benes. The proposed
MPC protocol is based on the homomorphic threshold n-out of-n ElGamal encryption.
Nevertheless, unlike our model, a MPC protocol is based on the computationally expen-
sive honest-verifier ZKP protocol, and the Benez permutation network.
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The efficient scheme for the secure two-party computation for “asymmetric settings”
in which one of the devices (smart card, mobile device, etc.) is strictly computationally
weaker than the other, is introduced in [7]. The workload for one of the parties is min-
imized in the presented scheme. The proposed protocol satisfies one-round complexity
(i.e., a single message is sent in each direction assuming trusted setup).The proposed pro-
tocol performs only two-party secure computations, while the number of participants
is not bounded in our schemes. Moreover, computationally expensive, Non Interac-
tive Zero-Knowledge Proof techniques, and “extractable hash functions” are used in the
scheme of [7].
A number of systematic approaches and corresponding architectures for creating reli-

able trust and reputation systems have been recently proposed in [14-18]. Themain scope
of these papers is the definitions of variety of settings for decentralized trust and repu-
tation systems. A probabilistic approach for constructing computational models of trust
and reputation, is presented in [17], where trust and reputation are studied in the scope
of various social and scientific disciplines.
The computation models for the reputation systems of [16] support user anonymity

by generating a pseudonym for any user, therefore, concealing user identity. In contrast
to [16], the main challenge of our approach is to preserve the user anonymity in the
computation process of the trust.
One of the common problems stated and discussed in [18] is that most existing rep-

utation systems lack the ability to differentiate dishonest from honest feedback and,
therefore, are vulnerable to malicious cooperations of users (peers in P2P systems) who
provide dishonest feedback. The dishonest feedback is effectively filtered out in [18] by
introducing the factor of feedback similarity between a user (pair) in the collusive group,
and a user (peer) outside the group. We propose a different approach for the removal of
dishonest users (outliers) by estimating the range of the correct trust values [19].
Two other works that are related to our scheme appear in [2] and [3]. In [2] several

privacy and anonymity preserving protocols are suggested for an Additive Reputation
System.
The authors state that supporting perfect privacy in decentralized reputation systems

is impossible. Nevertheless, they present alternative probabilistic schemes for preserving
privacy. A probabilistic “witness selection” method is proposed in [2] in order to reduce
the risk of selecting dishonest witnesses. Two schemes are proposed. The first scheme
is very efficient in terms of communication overhead, but this scheme is vulnerable to
collusion of even two witnesses. The second scheme is more resistant toward curious
users, but still is vulnerable to collusion. It is based on a secret splitting scheme. This
scheme provides a secure protocol based on the verifiable secret sharing scheme [20]
derived from Shamir’s secret sharing scheme [21]. The number of dishonest users is heav-
ily restricted and must be no more than n

2 , where n is the number of contributing users.
The communication overhead of this scheme is rather high and requiresO(n3) messages.
An enhanced model for reputation computation that extends the results of [2] is intro-

duced in [3]. The main enhancement of [2] is that a non additive (weighted) trust and
reputation can be computed privately. Three algorithms for computing non additive
reputation are proposed in [3]. The algorithms have various degrees of privacy and dif-
ferent levels of protection against adversarial users. These schemes are computationally
secure regardless of the number of dishonest users.
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The paper [22] (published later than [8,9]), proposes the distributedMalicious-k-shares
protocol, which extends the results of [2] and [3] in the sense that a high majority of
users (agents) can find k, k << n sufficiently trustworthy agents in a set of n − 1
users-feedback providers. This protocol is based on homomorphic encryption and Non-
Interactive Zero-Knowledge proofs. The Malicious k-shares protocol is applicable in the
Additive Reputation System only, while our schemes privately compute also the weighted
trust. The techniques, used for removal of outliers, is based on Non-Zero Knowledge
Proofs of set-membership and plain-text equality, while the proof preserves that a cer-
tain share lies in the correct interval. The proposed protocol requires the exchange of
O(n + log N) messages (where n and N are the number of users in the protocol and
environment, respectively), while we use a more computationally effective techniques for
removal of outliers exchanging only O(n) messages.
We propose new efficient trust computation schemes that can replace any of the

above schemes. Our schemes enable the initiator to compute unweighted (additive)
and weighted (non additive) trust with low communication complexity of O(n) (large)
messages.
Table 1 summarizes the approaches proposed in this paper, computations that they per-

form, resistance to the different types of attacks and the crypto building blocks that are
used.
This paper extends the schemes of [9] by introducing the MPKP and MPWP proto-

cols that compute average unweighted and weighted trust in the general case, even when
the initiator Un can be compromised by the adversary. The proofs of correctness of the
proposed protocols extend the presentations of [9] and [8].

Paper organization

The formal system description appears in Section ‘Research design and methodology’.
The computationally resistant (against curious but honest adversary) private trust pro-
tocol, AP, is introduced in Section ‘Results and discussion’ (Subsection “Accumulated
protocol AP”). The enhanced version of AP, WAP, is presented in Section ‘Results and
discussion’ (Subsection “Weighted accumulated protocol WAP”). The (resistant against
semi-malicious users) PKEBP and CEBP and the scheme for removing outliers are pre-
sented in Section ‘Results and discussion’ (Subsection “Protocols for removal of outliers”).
The generalized MPKP protocol and the weighted MPWP protocol are introduced in
Section ‘Results and discussion’ (Subsection “Multiple Private Keys Protocol MPKP”).
Conclusions appear in Section ‘Conclusions’.

Research design andmethodology
The purpose of this paper is to generate new schemes for private trust computation within
a community. The contribution of our work is as follows: (a) the trust computation is

Table 1 Summary of the PresentedApproaches

Protocol Computation Adversarial model Crypto building blocks

AP Average trust Honest but curious Homomorphic (of Paillier)

WAP Weighted average trust Honest but curious Homomorphic (of Paillier)

PKEBP Vector of exact trust; Semi-malicious Any public key encryption
removal of outliers (restricted)

CEBP Vector of exact trust; Semi-malicious Commutative (Polhig-Hellman),
removal outliers (non restricted) ElGamal
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performed in a completely distributed manner without involving a Trusted Authority.
(b) the trust in a particular user within the community is computed privately. The privacy
of trust values, held by the community users is preserved subject to standard crypto-
graphic assumptions, when the adversary is computationally bounded. (c) The proposed
protocols are resistant to a curious but honest poly-bounded k-listening adversary, Ad
[23]. Such an adversaryAdmay do the following:Admay trace all the network links in the
system and Ad may compromise up to k users, k < n. We require that an adversary Ad,
compromising an intermediate node can only learn the node’s trust values and an adver-
sary Ad, compromising the initiator Un can learn the output of the protocol, namely the
average trust. We distinguish between two categories of adversaries: honest but curious
adversaries, and semi-malicious adversaries [2]. An honest but curious k-listening adver-
sary follows the protocol by providing correct input. Nevertheless, it might try to learn
trust values in different ways, including collusion with, at most, k compromised users.
While an honest but curious adversary does not try to modify the correct output of the
protocol, a semi-malicious adversary may provide dishonest input in order to bias the
average trust value.
Let C = U1, . . . ,Un be a community of users such that each pair of users is connected

via an authenticated channel. Assume that the purpose of a user Un from C is to get
the unweighted Tavr

t or weighted average trust wTavr
t in a specific user, Ut , evaluated by

the community of users. Denote by Ti, i = 1 .. n, the trust of user Ui in Ut , and by
Tavr
t =

∑n
i=1 Ti

n and wTavr
t = 1/10

∑n
i=1 wiTi the unweighted and weighted average trust

inUt , respectively. Herewi = 1, 2, . . . , 10 is the subjective trust of the initiatorUn inUi in
the form of an integer that facilitates our secure computation. In the subsequent work we
always assume that wi is an integer in this range. Denote byMt the message sent by Un to
the first member of the community, C.
Our definitions of computational indistinguishability, simulation and private compu-

tation follow the definitions of [24]. Informally speaking, two probability ensembles
are computationally indistinguishable if no polynomial time, probabilistic algorithm can
decide with non-negligible probability if a given input is drawn from the first or the sec-
ond ensemble. A distributed protocol computes a function f privately if an adversary
cannot obtain any information on the input and output of other parties, beyond what is
implicit in the adversary’s own input and output. The way to prove that a protocol is pri-
vate is to show that there exists a polynomial time, probabilistic simulator that receives as
input the same input and output as an adversary and generates a string that is computa-
tionally indistinguishable from the whole view of the adversary, including every message
that the adversary received in the protocol. Intuitively, the existence of a simulator implies
that the adversary learns nothing from the execution of the protocol except its input and
output.

Methods
The main tool we use in our schemes is public-key, homomorphic encryption. In such an
encryption scheme there is a modulus, M, and an efficiently computable function φ that
maps a pair of encrypted values (EK (x), EK (y)), where 0 ≤ x, y < M, to a single encrypted
element φ(EK (x), EK (y)) = EK (x+y mod M). In many homomorphic encryption systems
the function φ is multiplication modulo some integer N. Given a natural number, c, and
an encryption, EK (x), it is possible to compute EK (c · x mod M), without knowing the
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private key. Set β = EK (1) and let the binary representation of c be c = ckck−1 . . . c0.
Go over the bits ck , . . . , c0 in descending order. If cj = 0, set β = φ(β , β) and if cj = 1,
set β = φ(φ(β , β), EK (x)). If φ is modular multiplication, this algorithm is identical to
standard modular exponentiation.
There are quite a few examples of homomorphic encryption schemes known in the

cryptographic literature, including [1,25-28]. There are also systems that allow both
addition and multiplication of two encrypted plaintexts, e.g., [29] where only a single
multiplication is possible for a pair of ciphertexts, and [30]. All of these examples of
homomorphic cryptosystems are currently assumed to be semantically secure [26].

Results and discussion
Accumulated protocol AP

The AP protocol may be based on any homomorphic encryption scheme such that the
modulus N satisfies N >

∑n
i=1 Ti. We illustrate the protocol by using the semantically

secure Paillier cryptosystem [1]. This cryptosystem possesses a homomorphic prop-
erty and is based on the Decisional Composite Residuosity assumption. Let p and q be
large prime numbers, and N = pq. Let g be some element of Z∗

N2 . Note that the base,
g, should be chosen properly by checking whether gcd(L(gλmod N2),N) = 1, where
λ = lcm(p − 1, q − 1), and the L function is defined as L(u) = u−1

N . The public key is the
(N , g) pair, while the (p, q) pair is the secret private key. The ciphertext, c, for the plaintext
messagem < N is generated by the sender as c = gmrN mod N2, where r < N is a ran-
domly chosen number. The decryption is performed as m = L(cλ mod N2)

L(gλ mod N2)
mod N at the

destination. Our schemes are based on the homomorphic property of the Paillier cryp-
tosystem. Namely, the multiplication of two encrypted plaintextsm1 andm2 is decrypted
as the sum m1 + m2 mod N of the plaintexts. Thus, E(m1) · E(m2) ≡ E(m1 + m2 mod
m) mod N2 and E(m1)

m2 ≡ E(m1 ·m2 mod N) mod N2. The AP protocol is described in
Algorithm 1.

Algorithm 1 Accumulated Protocol.
1: AP Initialization :
2: Un sets A = 1 andMt = A
3: Un sendsMt to U1
4: AP Execution :
5: for i = 1 . . . n − 1
6: A = A · E(Ti) mod N2

7: Mt = A
8: Ui sends Mt to Ui+1
9: end for
10: UponMt receipt at Un
11: St = D(Mt) = ∑n−1

i=1 Ti
12: Tavr

t = St
n−1

Assume that the initiator, Un, has generated a pair of its public and private keys as
described above, and it has shared its public key with each community user. Then, Un

initializes to 1 the single entry trust message Mt and sends it to the first U1 user (lines
1–3). Upon receiving the message,Mt , each node, Ui, encrypts its trust in Ut as E(Ti) =
gTirNi mod N2. Here, Ti is a secret U ′

i s trust level in Ut and ri is a randomly generated
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number. The U ′
i s output is accumulated in the accumulated variable A multiplying its

current value by the new encrypted Ui − th trust E(Ti) from the i − th entry as A =
A · (E(Ti)). ThenUi sends the updatedMt message to the next user, Ui+1. This procedure
is repeated until all trust values are accumulated in A (lines 4–9). The final Mt message
received by the initiator, Un is Mt = A = ∏n

i=1 E(Ti) mod N2. As a result, the Un user
decrypts the value accumulated in the M message as the sum of trusts St = D(Mt) =∑n

i=1 Ti. Thus, the average trust is Tavr
t = St

n−1 (Algorithm 1, lines 10–12). Proposition 1
proves that AP is a computationally private protocol to compute the trust of a community
in Ut .

Proposition 1. Assume that an honest but curious adversary corrupts at most k users
out of a community of n users, k < n. Then,AP privately computes Tavr, the average trust
in user Ut .

Proof. In order to prove the proposition, we have to prove that for every adversary
there exists a simulator that given only the adversary’s input and output, generates a
string that is computationally indistinguishable from the adversary’s view in AP. Let I =
{Ui1 ,Ui2 , . . . ,Uik } denote the set of users that the adversary controls. Let viewAP

I (XI , 1n)
denote the combined view of all users in I. viewAP

I includes the input, XI = {Ti1 , . . . ,Tik },
of all users in I, and a sequence of messages E(

∑i1
j=1 Tj), . . . , E(

∑ik
j=1 Tj) received by users

in I. A simulator cannot generate the exact sequence E(
∑i1

j=1 Tj), . . . , E(
∑ik

j=1 Tj), since it
does not have the input of uncorrupted users. Instead, the simulator chooses a random
value αj for any userUj �∈ I, from the distribution of trust values,D. The simulator denotes
αi1 = Ti1 , . . . , αik = Tik and computes E(αj) for j = 1, . . . , n− 1. The simulator now com-
putes:

∏i1
j=1 E(αj) ≡ E(

∑i1
j=1 αj) mod N2, . . . ,

∏ik
j=1 E(αj) ≡ E(

∑ik
j=1 αj) mod N2. Hence,

a simulator replaces E(
∑ik

j=1 Tj) byE(
∑ik

j=1 αj).
Assume, in contradiction, that there exists an algorithmDIS that distinguishes between

the encryption of partial sums E(
∑i1

j=1 Tj), · · ·E(
∑ik

j=1 Tj) of the correct trust values and
the values E(

∑i1
j=1 αj), · · · E(

∑ik
j=1 αj) randomly produced by a simulator. We construct

an algorithm, B, that distinguishes between the two sequences E(T1), · · · E(Tn−1) and
E(α1), · · · , E(αk), contradicting the semantic security property of E. The input to algo-
rithm B is a sequence of values E(x1), · · · E(xn−1) and it attempts to determine whether
the values x1, . . . , xn−1 are equal to the values T1, . . . ,Tn−1 that the users provide, or is
a sequence of random values chosen from the distribution D. The algorithm B computes
for every � = 1, . . . , k

i�∏
j=1

E(xj) ≡ E

⎛
⎝ i�∑

j=1
xj

⎞
⎠ mod N2,

and provides the encryption of partial sums E(
∑i1

j=1 xj), . . .E(
∑ik

j=1 xj) as input to
DIS. B returns as output the same output as DIS. Since the input of DIS is
E(

∑i1
j=1 Tj), . . .E(

∑ik
j=1 Tj) if and only if the input of B is E(T1), . . .E(Tn−1), we find that B

distinguishes between its two possible input distributions with the same probability that
DIS distinguishes between its input distributions.

AP uses O(n) messages each of length O(n).
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Weighted accumulated protocol WAP

TheWeighted Accumulated WAP protocol, in addition to the AP protocol, generates the
weighted average trust in a specific user, Ut , by the users in the community. The WAP
protocol is based on an anonymous communications protocol proposed in [31] and on the
homomorphic cryptosystem, e.g., Paillier cryptosystem [1]. It is described in Algorithm 2.

Algorithm 2Weighted Accumulated ProtocolWAP.
1: WAP Initialization:
2: Un generates TV = [E(w1) .. E(wn−1)]
3: Un sets A = 1 andMt = (TV ,A)

4: WAP execution:
5: Un sendsMt to U1
6: for i = 1 . . . n − 1
7: A = AE(wi)

TiE(0) mod (N2)
8: Delete TV [i]
9: Ui sends Mt to Ui+1
10: end for
11: UponMt reception atUn:
12: St = D(A) = ∑n

i=1 wiTi
13: wTavr

t = 1
10

St
n−1

The initiator, Un, generates n − 1 weights w1, . . . ,wn−1. Each wi value reflects the U ′
ns

subjective trust level in user Ui. Un initializes the accumulated variable, A, to 1, encrypts
each wi value by means of, e.g., the Paillier cryptosystem [1] as E(wi) = gwihrn,i(mod N2),
composes a Trust Vector TV = [E(w1) .. E(wn−1)] and sends the messageMt = (TV ,A)

to U1. Here, as in the AP case, p, q are large prime numbers which compose the Paillier
cryptosystem, N = (p − 1)(q − 1), and g and h are properly chosen parameters of the
Paillier cryptosystem. rn,i is a random degree of h chosen by Un for each Ui from C. Note
that the AP protocol is a private case of theWAP protocol where all weights wi are equal
to 1.
As in the AP case, the Mt message is received by the community users in the pre-

scribed order. Each Ui user encrypts its weighted trust in Ut as E(Ti) = E(wi)
TiE(0)

and accumulates it in the accumulated variable A (lines 6–10). Note that multiplying by
the random encryption of zero E(0) ensures semantic security of theWAP protocol since
the user’s output cannot be distinguished from a simulated random string. As a result,
the initiator, Un, receives theMt message and decrypts the value accumulated in A as the
weighted sum of trust St = D(A) = ∑n−1

i=1 wiTi. Therefore, the average trust is equal to
wTavr

t = 1/10
∑n

i=1 wiTi. Proposition 2 proves the privacy of the weighted average trust
wTavr

t in theUt user by the community users in a computationally secure manner.

Proposition 2. Assume that an honest but curious adversary corrupts at most k users
out of a community of n users, k < n. Then,WAP privately computes wTavr , the average
weighted trust in user Ut .

Proof. The proof is similar to the proof of Proposition 1. View of adversary includes the
input of compromised users Ti1 , . . . ,Tik , trust vector TV, and the accumulated variable,
A. Each compromised user Uij from I receives TV = [E(wij ), E(wij+1 ) . . . , E(wn)] and
A = ∏ij

i=1 E(wi)TiE(0).
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A simulator for the adversary simulates viewWAP
I as follows. The simulator input

Ti1 , . . . ,Tik is the same as the input of the compromised users. A simulator chooses at
random v1, . . . , vn according to a distribution,W, of weights, and T̃1, . . . , T̃n according to
a distribution,D, of trust values. Here T̃i1 = Ti1 , . . . , T̃ik = Tik . Due to the semantic secu-
rity of the homomorphic cryptosystem, the encrypted random values E(v1), . . . , E(vn) are
indistinguishable from the encrypted correct weights E(wi1 ), . . . , E(win).
The randomization of any Ui − th user output is performed by multiplying its secret

wTi
i by the random encryption of a zero string E(0). Given E(w), the two values E(w)T

and E(u), where u is chosen at random from the distribution of wT, can be distinguished
since T is chosen from a small domain of trust values. Given E(w), the values E(w)TE(0)
are distributed identically to an encryption E(w)T = E(wT mod N). Based on the seman-
tic security of the homomorphic cryptosystem, E(u) and E(wT) cannot be distinguished
even given E(w).

WAP uses O(n) messages each of length O(n).

Protocols for removal of outliers

The protocols for outliers removal are introduced in this section. The Public Key Encryp-
tion Based Protocol PKEBP produces a vector of the exact trust values. As a result, the
initiator, Un, can evaluate the correct trust range by removing the outliers that provide
extremely high or low trust feedback. PKEBP preserves user privacy in a case where the
adversary cannot corrupt the initiator and several users at the same time.
The generalized Commutative Encryption Based Protocol (CEBP) relaxes this limita-

tion and privately computes the exact trust values contributed by each community user,
even in the case when an adversary can corrupt the initiator and several users at the same
time.

Public Key Encryption Based Protocol PKEBP

Denote the encryption algorithm used in this scheme by E and the decryption algorithm
by D. Un generates a pair (k, s) of public-private keys. Then Un publishes its decryption
public key k, while the private decryption key s is kept secret.
The Public Key Encryption Based Protocol PKEBP is performed in two rounds

(Algorithm 3, Figure 1). At the initialization stage Un initializes the n − 1-entry vector
TV [1 .. n − 1] and sends it to the community of users in the prescribed order in the
Mt = (TV [1 .. n − 1]) message (Algorithm 3, lines 1–2 and Figure 1, Round 1).

Algorithm 3 Vector Protocol PKEBP.
1: Initialization:
2: Un initializes TV =! [1 .. n − 1]
3: Round 1:
4: Un sends Mt = TV [1 .. n − 1] to C
5: FOR i = 1 . . . (n − 1)
6: TV [i]= E(Ti)
7: END FOR
8: Round 2:
9: FOR i = 1 . . . (n − 1)

10: random π : swap(TV [i] ,TV [ij])
11: END FOR
12: UponMt = (TV [1 .. n − 1]) reception atUn:
13: D(M) =[T1, .. Tn−1]
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Figure 1 Public Key Encryption Based Protocol PKEBP.

In the first round, on reception of Mt each user, Ui, encrypts its trust, Ti, by k in the
correspondingTV [i]′ s entry as E(Ti), and sends the updated messageMt to the next user
(Algorithm 3, lines 3–7).
The second round of the PKEBP protocol is performed when the updated TV [1 .. n−1]

vector returns fromUn−1 to the userU1 (see Algorithm 3, lines 8–11 and Figure 1, Round
2). Note that theTV vector does not visit the initiatorUn after execution of the first round.
Each user, Ui, performs a random permutation of its i− th entry with a randomly chosen
ij − th entry during the second round. After that, the newly updated Mt vector-message
is sent to the next Ui+1 user (Algorithm 3, lines 8–11).
The result of round 1 is a sequence of encrypted elements (E(T1), . . . , E(Tn−1)) while

the result of round 2 is a sequence TV [1 .. n − 1]= (E(T∗
1 ), . . . , E(T∗

n−1)). The multi-
set T1, . . . ,Tn−1 is identical to the multi-set T∗

1 , . . . ,T∗
n−1. The sequence T1, . . . ,Tn−1

is permuted to T∗
1 , . . . ,T

∗
n−1 by a permutation π , which is computed in a distributed

manner by all community members (Algorithm 3, line 10). Thus, by applying the decryp-
tion procedure, all encrypted trust values T1, . . . ,Tn−1 are revealed (Algorithm 3, lines
12–13). Moreover, the random permutation π performed at the second round preserves
the unlinkability of user identities.
Proposition 3 proves the privacy of the PKEBP protocol.

Proposition 3. PKEBP performs computationally secure computation of exact private
trust values assuming that an adversary cannot corrupt the initiator and several users at
the same time.

Proof sketch. Case 1: Un /∈ I . We argue that PKEBP is private by showing that an
adversary that controls a set of compromised users does not learn any information on
the trust values of other users. We achieve that by showing a simulator that, given the
input of compromised users, can simulate the messages that these users receive as part
of the protocol. Therefore, protocol messages do not give users in I any information
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on users outside of I. Assume that the set I of compromised users includes k mem-
bers I = {

Ui1 , . . . ,Uik
}
, while the uncompromised users are Uik+1 , . . . ,Uin . The view

of users in I includes the input of compromised users Ti1 , . . . ,Tik and trust vectors
TV. Each compromised user Uij from I receives the TV vector with partially permuted
entries.
A simulator for the adversary simulates this view as follows. The simulator input is the

same as the input of compromised users and it contains the trust values of the compro-
mised users Ti1 , . . . ,Tik and the set of their permuted indexes ij1, . . . ijk . The simulator
chooses a random value, αi� , for any user U� �∈ I from the distribution D of trust values.
The simulator sets α� = T� and computes E(αj) for � = k + 1, . . . , n. Due to the seman-
tic security of the homomorphic cryptosystem [24,32], the simulator cannot distinguish
between the encryption of the correct trust values and the encryption of simulated ran-
dom variables, E(αj), of uncompromised users, Uj, chosen from the distribution, D, of
trust values.
Case 2: {Un} = I . In this case, the view ofUn consists of the TV with the randomly per-

muted entries. TV includes the sequence of the randomly permuted exact trust values,
decrypted by the secret key, s. We prove the privacy of PKEBP by showing a simulator
that, given a PKEBP output sequence Ti1 , . . . ,Tin−1 of the exact trust values, can simu-
late the TV as Un receives it as a part of the protocol. A simulator for the compromised
Un simulates this view as follows. The simulator input is the multi-set T1, . . . ,Tn of the
exact trust values that have been decrypted by U ′

ns public key, s. The simulator chooses
a random permutation and permutes the received values. Due to the random permuta-
tion, π , performed by each community user, the simulator cannot distinguish between
the simulated sequence Tj1, . . . ,Tjn−1 and the correct output of the PKEBP.
As a result, given a multi-set of the exact trust values,Un cannot link these values to the

users that contributed them.

PKEBP uses O(n) messages each of length O(n).
Generating the average trust level in the presence of semi-malicious users is based on

the algorithm suggested in [19]. Let us define by U, the multi-set of non corrupted users
which provide correct feedback, and by V, the multi-set of all users participating in the
trust computation process. According to [19] the following requirement must be satisfied
in our model: |V −U| ≤ J and |V | ≥ 2J for a certain J value. Then the range of the correct
trust values, range(U), contains the subset reduceJ(V ) of V. Here reduceJ(V ) is received
from the V multi-set of all (correct and extremely low/high) trust values, by deleting the
J smallest and J largest values, respectively.
If an adversary can corrupt the initiator and several users at the same time, a different

protocol is required. The generalized Commutative Encryption Based Protocol CEBP is
presented in the next subsection.

Commutative Encryption Based Protocol CEBP

The CEBP we propose, uses commutative encryption as a building block. An encryp-
tion scheme is commutative if a ciphertext that is encrypted by several keys can be
decrypted regardless of the order of decryption keys. Formally, denote the encryption
algorithm by E and the decryption algorithm by D. The encryption scheme is commu-
tative if for every plaintext message m and every two keys k1, k2 if c = Ek1(Ek2 (m))
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then m = Dk1(Dk2(c)) (note that for any encryption scheme m = Dk2(Dk1(c)).
One possible candidate for a commutative encryption scheme is the Pohlig-Hellman
scheme [33].
The basic idea of CEBP is for each user to encrypt all the trust values and then decrypt

and permute them at the same time so that an adversary cannot associate decrypted trust
values with the users that published their encryption. The CEBP protocol is executed in
three rounds (Algorithm 4). Each round passes sequentially from the first user Un to the
last Un−1.

Algorithm 4 Commutative Encryption Based Protocol CEBP.
1: Round 1:
2: Un chooses parameters for El-Gamal encryption p, q, g, kn.
3: Un initializes an empty vector TV [1, . . . , n − 1].
4: Un sends p, q, g, gkn mod p and TV [1, . . . , n − 1] to U1.
5: FOR i = 1, . . . , n− 1
6: Ui chooses four Pohlig-Hellman key pairs (a1i , b

1
i ), (a

2
i , b

2
i ), (α

1
i , β

1
i ), (α

2
i , β

2
i ).

7: Ui sets TV [i]=
(
gkia1i mod p, (Tigkikn)α

1
i mod p

)
.

8: Ui sends p, q, g, kn and TV [1, . . . , n− 1] to Ui+1.
9: END FOR

10: Round 2:
11: Un sends TV [1, . . . , n − 1] to U1.
12: FOR i = 1, . . . , n− 1
13: FOR j = 1, . . . , n − 1, j �= i
14: Ui sets TV [j, 1]= (TV [j])α1

i a
1
i mod p.

15: Ui sets TV [j, 2]= (TV [j])α2
i a

2
i mod p.

16: END FOR
17: Ui sets TV [i, 1]= (TV [j])α1

i mod p.
18: Ui sets TV [j, 2]= (TV [j])α2

i mod p.
19: Ui sends TV [1, . . . , n − 1] to Ui+1.
20: END FOR
21: Round 3:
22: Un sends TV [1, . . . , n − 1] to U1.
23: FOR i = 1, . . . , n− 1
24: FOR j = 1, . . . , n − 1
25: Ui sets TV [j, 1]= (TV [j])β1

i b
1
i mod p.

26: Ui sets TV [j, 2]= (TV [j])β2
i b

∑2
i mod p.

27: Ui randomly permutes the n − 1 elements of TV.
28: END FOR
29: Ui sends TV [1, . . . , n − 1] to Ui+1.
30: END FOR
31: Epilogue:
32: Un decrypts TV [1, . . . , n − 1], thus obtaining the multi-set of trust values.

The first round begins with the initiator,Un choosing and publishing a public key. Every
other user selects a symmetric key for a commutative encryption scheme. All the users
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encrypt their trust values both with their keys and with the public key of Un. Encryption
with the initiator’s public key prevents an adversary that does not control the initiator,Un,
fromobtaining themulti-set of trust values. After the first round, for every i = 1, . . . , n−1,
the i-th entry in the trust vector, TV, includes the trust value of Ui encrypted by both the
public key of Un and the symmetric key of Ui.
In the second round each user encrypts all entries in TV entries in such a way that at

the end of the second round the i-th entry is the trust value of Ui encrypted by the keys
of U1,U2, . . . ,Un. Finally, in the third round, for every i = 1, . . . , n− 1, Ui decrypts every
entry using its own symmetric key and randomly permutes the entries of TV. At the end
of round 3 the trust vector contains all the trust values, encrypted by the public key of
Un and permuted. By decrypting all the entries in TV, Un obtains the vector of all trust
values.
We use El-Gamal encryption [34] as the initiator’s public key scheme. The symmetric

scheme for users U1, . . . ,Un−1 is Pohlig-Hellman. Both the Pohlig-Hellman and the El-
Gamal schemes are implemented over the same group, which is defined as follows. Let p
be a large prime, such that p − 1 has a large prime factor, q. Let g ∈ Z

∗
p be an element

of order q in Z
∗
p. In a Pohlig-Hellman scheme, the key is a pair a, b ∈ Z

∗
p−1 such that

ab ≡ 1 mod (p−1). A plaintextm ∈ Zp is encrypted by c ≡ ma mod p and a ciphertext is
decrypted bym ≡ cb mod p. In an El-Gamal scheme, the private key is a ∈ {0, . . . , q− 1},
the public key is ga mod p and a plaintextm ∈ Zp is encrypted by the pair (gb mod p, gab ·
m mod p). We refer to the two parts of an El-Gamal encryption as two components.
By using Pohlig-Hellman and El-Gamal encryption schemes over the same group

we ensure that the security of CEBP can be reduced to the hardness of the Deci-
sional Diffie-Hellman (DDH) problem [35]. The DDH problem is to distinguish between
the two ensembles

(
gx mod p, gy mod p, gz mod p

)
and

(
gx mod p, gy mod p, gxy mod p

)
.

The hardness assumption of DDH is that no probabilistic, polynomial time algo-
rithm can distinguish between these two probability ensembles with non-negligible
probability.
The details of the protocol follow.
The initiator begins round 1 (lines 1–9) by choosing parameters for El-Gamal encryp-

tion and distributes its public key gkn mod p. Every other user Ui (i = 1, . . . , n − 1)
chooses four random and independent pairs of Pohlig-Hellman keys (a1i , b

1
i ), (a2i , b

2
i ),

(α1
i , β

1
i ), (α

2
i , β

2
i ).Ui uses the El-Gamal public key to encrypt its trust value, Ti. The result

is
(
gki mod p, Tigkikn mod p

)
, where Ui chooses ki randomly in the range 0, . . . , q − 1.

Ui proceeds to encrypt the El-Gamal encryption of Ti with its Pohlig-Hellman keys.
Each of the two components of the El-Gamal encryption is encrypted by one distinct
Pohlig-Hellman key. The result is

(
gkia

1
i mod p, (Tigkikn)a

2
i mod p

)
.

Ui completes the round by publishing this value in TV [i]. We think of TV [i] as hav-
ing two components, TV [i, 1] and TV [i, 2]. Ui stores gkia

1
i mod p in TV [i, 1] and stores

(Tigkikn)a
2
i mod p in TV [i, 2].

In round 2, every user, Ui, i = 1, . . . , n − 1 makes sure that every entry in TV [] is
encrypted with all four of its Pohlig-Hellman encryption keys (where two of the keys are
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used to encrypt the left component and two are used to encrypt the right component).
Thus, Ui encrypts TV [i] with α1

i and α2
i and encrypts TV [j] for any j �= i with a1i , a

2
i , α

1
i

and α2
i . After the second round the entry TV [i] holds the value:

(
gki·α1

1a
1
1·...·α1

n−1a
1
n−1 mod p, (Tigkikn)α

2
1a

2
1·...·α2

n−1a
2
n−1 mod p

)
.

In round 3, the users both decrypt and permute all the values. Each user decrypts all
values using both its pairs of Pohlig-Hellman keys (lines 20–27) and then randomly per-
mutes the resulting vector of values. Due to the commutative property of the scheme, the
initiator, Un, holds all the trust values at the end of round 3. However, the random per-
mutation each user applies to the encrypted values in round 3 ensures that even if only a
pair of users is not compromised, the decrypted trust values are randomly permuted in
relation to their associated users.

Proposition 4. Assume that the DDH problem is hard and assume that an honest but
curious adversary corrupts at most k users out of a community of n users, k ≤ n. If the
trust values of all the users are in the sub-group generated by g, then, CEBP privately
computes the set of all trust values of community users.

Proof sketch. If the adversary controls at least n− 1 users, including the initiator, then
the protocol is trivially private, since the output reveals the exact trust values of every
user, and thus any protocol does not add information. If the adversary does not control
the initiator then the protocol is private because all trust values are encrypted by the
initiator’s public key throughout the protocol. Since the El-Gamal encryption scheme is
semantically secure, given the hardness of DDH problem, it is easy to argue privacy.
Therefore, the most interesting case is when k ≤ n − 2 and the adversary controls

the initiator. To prove privacy we define a simulator that is given the adversary’s input
and output (which includes the set of trust values) and simulates the adversary’s view of
protocol messages.
Eachmessage in our protocol consists of the trust vector TV. Each entry in this vector is

a pair of elements inZ∗
p. Thus, the whole view of the adversary can bewritten as e1, . . . , em,

where ei ∈ Z
∗
p for every i = 1, . . . ,m. The value ofm is at mostO(n2) because the number

of elements in TV is 2(n − 1) and the adversary receives a message with TV in it at most
n − 2 times for each of the three rounds.
Note that each element ei is obtained by raising g to a power ηi that depends on the

input and random coin tosses of each participant. The simulator generates a simulated
view f1, . . . , fm as follows. If ηi is determined by the input and coin tosses of the adversary,
then the simulator who has access to this input and coin tosses sets fi = ei. However, if ηi
is generated at least partially by an uncorrupted node then the simulator independently
chooses a random element ζi ∈ {0, . . . , q − 1} and sets fi = gζi .
To prove that the simulator’s view is computationally indistinguishable from the real-

world view, we construct a series of hybrid ensemblesH0, . . . ,Hm, such thatH0 is the real
world view e1, . . . , em and for every i = 1, . . . ,m we define Hi

	= f1, . . . , fi, ei+1, . . . , fm.
Essentially, Hm is the view of the simulator.
We can show that for every i, ifHi can be computationally distinguished fromHi+1 then

the DDH assumption is false. Since we assume that DDH is a hard problem we have that
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Hi and Hi+1 are computationally indistinguishable and sincem is of polynomial size in n,
we have that H0 is indistinguishable from Hm, completing the proof.

The protocol requires O(n) messages, each of length O(n) and the computation
complexity for each participant in the scheme is O(n).

Multiple Private Keys ProtocolMPKP

The AP and WAP protocols introduced in the previous sections carry out private trust
computation assuming that the initiator Un is not compromised and does not share its
private key with other users. In the rest of this work assume that any community user,
including Un, may be compromised by a poly-bounded k-listening curious adversary.
The generalized Multiple Private Keys Protocol MPKP copes with this problem and

outputs the average trust. The idea of the MPKP protocol is as follows. During the ini-
tialization stage the Un user initializes all entries of trust vector, TV, and accumulated
vector, AV, to 1, sets the accumulated variable A to 1, and sends the Mt = (TV ,AV ,A)

message to the first community user U1 as in the previous protocols. During the first
round of theMPKP protocol execution each user,Ui, randomly fragments its secret trust,
Ti, to a sum of n − 1 shares, encrypts the corresponding share by the public key of each
Uj, j = 1 .. n − 1 user and accumulates its encrypted shares (multiplying each of them
with the corresponding entries) in the accumulated vector,AV. After execution of the first
round, the updated AV vector does not return to the initiator Un. The AV vector visits
each community user, while each Ui opens the i − th entry (that is encrypted by Ui − th
public key) revealing a sum of decrypted shares, encrypts this sum by the public key of the
initiator Un, accumulates this sum in the accumulated variable ,A, and deletes the i − th
entry of the AV vector.
A detailed description of the MPKP protocol follows. Assume that each community

user, Ui, i = 1 .. n − 1 generates its personal pair (P+
i , P

−
i ) of private and public keys.

Denote by Ei and Di the encryption and decryption algorithms produced by Ui. The
private key, P+

i , is kept secret, while the public key, P−
i , is shared with all other users

U1, . . . ,Ui−1, Ui+1 . . .Un. As in the previous schemes, the cryptosystem must be homo-
morphic. An additional requirement is that the homomorphism modulus, m, must be
identical for all users. One possibility is to use the Benaloh cryptosystem [28,36] for
which many different key pairs are possible for every homomorphism modulus. The
system works as follows. Select two large primes, p, q, such that: N 	= pq, m|p − 1,
gcd(m, (p − 1)/m) = 1 and gcd(m, q − 1) = 1, which implies that m is odd. The density
of such primes along appropriate arithmetic sequences is large enough to ensure effi-
cient generation of multiple p, q (see [36] for details). Select y ∈ Z

∗
N such that yφ(N)/m �≡

1 mod N . The public key is (N , y), and encryption of M ∈ Zm is performed by choos-
ing a random u ∈ Z

∗
m and sending yMum mod N . In order to decrypt, the holder of the

secret key computes at a preprocessing stage TM
	= yMφ(N)/m mod N for everyM ∈ Zm.

It should be noted thatm is small enough such thatm exponentiations can be performed.
Decryption of z is performed by computing zφ(N)/n mod N and finding the unique TM to
which it is equal.
The MPKP is performed in two rounds (Algorithm 5). The initialization procedure is

shown in lines 1–4. The first round is the accumulation round, where all users share
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their secret trust Ti values with other users. Upon reception of a message, Mt , each
user, Ui, proceeds as follows: (a) Ui chooses ri1, . . . , r

i
n−1 uniformly at random such that

Ti = ∑n−1
j=1 rij ; (b) Ui encrypts each rij , j = 1 .. n − 1 by the public key P−

j of the Uj user
and multiplies it by the current value stored in j − th entry of AV. As a result, the output
AV vector contains the accumulated product

∏n−1
k=1 Ej(r

k
j ) in each j−th entry (lines 5–12).

Algorithm 5Multiple Private Keys Protocol MPKP.
1: MPKP Initialization:
2: Un generates TV = [1 .. 1]
3: Un sets AV = [1 .. 1], A = 1 andMt = (TV ,AV ,A)

4: Un sendsMt to U1
5: Round 1:
6: for i = 1 . . . (n − 1)
7: Ti = ∑n−1

j=1 rij
8: for j = 1 . . . (n − 1)
9: AV [j]= AV [j]Ej(rij)
10: end for
11: Ui sends Mt to Ui+1
12: end for
13: Round 2:
14: for i = 1 . . . (n − 1)
15: Di(AV [i]) = ∑n−1

j=1 rji
16: A = AEn(

∑n−1
j=1 rji)

17: Delete AV [i]
18: end for
19: UponMt = (A) reception atUn:
20: A = ∏n−1

i=1 En(
∑n−1

j=1 rji)
21: St = Dn(A)

22: Tavr
t = St

n−1

In the second round, on reception of messageMt , each user, Ui, decrypts the Mt mes-
sage and decrypts the corresponding i − th entry by its private key, P+

i , computes the∑n−1
j=1 rji sum, encrypts it by the U ′

ns public key, P−
n , as En(

∑n−1
j=1 rji), accumulates this

sum in the accumulated variable, A, deletes the i − th entry and sends the updated
TV vector to the next Ui+1 user. Note that the partial sum

∑n−1
j=1 rji that Ui decrypts

reveals no information about correct trust values. As a result of the second round the
initiator Un receives A = ∏n−1

i=1 En(
∑n−1

j=1 rji) (lines 13–19). Un decrypts
∏n−1

j=1 En(r
j
i),

and computes the sum of trusts as St = ∑n−1
i=1

∑n−1
j=1 rji. Actually, the average trust

Tavr is equal to St
n (lines 20–22). Proposition 4 states the privacy of the MPKP proto-

col. The communication complexity of the MPKP protocol is O(n) messages, each of
length O(n).

Proposition 5. MPKP performs computationally secure computation of the exact pri-
vate trust values in the Additive Reputation System. No restriction is imposed on the
initiator Un.

The last introduced protocol is the MPWP for the weighted average trust wTavr
t com-

putation. The idea of theMPWP is as follows. During the initialization stage the Un user
generates a vector,TV, such that each i−th entry contains theUi−thweightwi encrypted
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by theUn − th public key.Un sends TV and a (n−1)× (n−1) matrix, SM, with all entries
initialized to 1 to the first community user, U1, as in the previous protocols. During the
first round of theMPWP execution each Ui computes its encrypted weight in the power
of its secret trust En(wi)

Ti , multiplies it by a randomly chosen number (bias) zi, and accu-
mulates the product in the accumulated entry (by multiplying the entry by the obtained
result). In addition, Ui fragments its bias, zi, into n − 1 shares, encrypts each j − th share
by the public key of Uj, and inserts it in the j − th location of i − th matrix row. At the
end of the first round Un decrypts the total biased weighted trust. The total random bias
is removed during the second round of theMPWP execution when each Uj decrypts the
entries of j − thmatrix column, encrypts the sum of these values by the public key of the
initiator, accumulates it in an accumulation variable, A, and deletes the j − th column.
The details follow. The initiator, Un, starts the first round by generating the encryption

of the n − 1 entries trust vector, TV = [En(w1) .. En(wn−1)]. Note, that each weight wi is
encrypted by the Un − th public key, P−

n . In addition, Un initializes to 1 each entry of the
(n−1)×(n−1) matrix of shares SM. TheMw

t message sent byUn to the community users
isM = (TV , SM). Upon the TV vector reception eachUi user proceeds as follows: (a)Ui

computes En(wi)Ti · zi. Here zi is a randomly generated by Ui number that provides the
secret bias. (b) Ui accumulates its encrypted weighted trust in the accumulated variable
A by setting A = A ·En(wi)

Ti · zi. After that, the i− th entry of TV is deleted. (c) Ui shares
zi in the i − th row of the SM shares matrix as SM[i] []= [E1(z1i ) .. En−1(zn−1

i )]. At the
end of the first roundUn receives the TV [] entry that is equal to the biased product BT =∏n

j=1 En(wi)Tizi, encrypted by its public key, and the updated shares matrix SM while
SM[i] [j]= Ej(z

j
i). Actually, the decryption procedure applied on the TV [ ] vector outputs

the decrypted sum D(TV []) = ∑n−1
i=1 wiTi + ∑n−1

i=1 zi. A second round is performed in
order to subtract the random bias

∑n−1
i=1 zi from the correct weighted average trustwTavr.

The second round of the MPWP is identical to the corresponding round of the MPKP.
Upon reception of the SMmatrix each user,Ui, decrypts the corresponding i− th column
Ei(zi1) Ei(zi2) . . .Ei(zin−1), encrypted by all community users by Ui − th public key, P−

i .
Each Ui, i = 1 .. n − 1 computes the sum of the partial shares PSSi = ∑n−1

j=1 zij , encrypts
it by the Un − th public key, P−

n , and accumulates it in the accumulated variable A. After
that, i − th SM′s column SM[] [i] is deleted. As a result of the second round, the initiator,
Un, receives the accumulated variable, A = ∏n−1

i=1 Ei(PSSi). The encrypted bias, BT, is
decrypted as D(A) = ∑n−1

i=1
∑n−1

j=1 zij .
Finally, the weighted average trust wTavr is equal to wTavr = TV − A. The private

trust computation carried out by theMPKP and theMPWP protocols is preserved in the
computationally secure manner due to the following reasons:

(a) Each community user, Ui, fragments its trust, Ti, randomly into n − 1 shares
(Algorithm 5, lines 6–8).

(b) Each rji encrypted by Ui by the Uj − th public key, P−
j , shared with each

Uj, j = 1, . . . , n− 1 user and accumulated in the TV vector, reveals no information
about the exact Ti value to Uj (lines 9–14).

(c) The decryption performed by each Ui, i = 1, . . . , n− 1 by its private key, P+
i , at the

second round, outputs the sum of the partial shares, Di(TV [i]) = ∑n−1
j=1 rij of all

community users. In essence, the
∑n−1

j=1 rij value reveals no information about the
secret trust values T1, . . . ,Ti−1, Ti+1, . . . ,Tn−1.
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(d) The encryption En(
∑n−1

j=1 rij) of the partial shares sum performed by each Ui with
the initiator Un public key P−

n and accumulated in A, can be decrypted by Un only.
(e) Assume a coalition Uji , . . . ,Uji+k−1 of at most k < n curious adversarial users,

possibly including the initiator Un. Then the exact trust values revealed by the
coalition, are the coalition members trust only. The privacy of the uncorrupted
users is preserved by the homomorphic encryption scheme which generates for
each user its secret private key, and by the random fragmentation of the secret
trust.

InMPWP, O(n) messages of length O(n2) are sent.

Conclusions
We derived a number of schemes for the private computation of trust in a given user
by a community of users. Trust computation is performed in a fully distributed man-
ner without involving a Trusted Authority. The proposed AP and WAP protocols are
computationally secure, under the assumption of an uncompromised initiator, Un. The
AP and WAP protocols compute the average unweighted and weighted trust, respec-
tively. The generalized MPKP and MPWP protocols relax the assumption that Un is
non-compromised. They carry out the private unweighted and weighted trust computa-
tion, respectively, without limitations imposed on Un. The number of messages sent in
the proposed protocols is O(n) (large) messages.
The PKEBP and CEBP for the removal of outliers are presented as well.The protocols,

introduced and analyzed in this paper, may be efficiently applied in the fully distributed
environment without any trusted authority. Compared with other models, our schemes
privately compute trust values with low communication overhead of O(n) (large) mes-
sages in the simplified ring network topology. The schemes may be applied to complete
topology systems when all network users are connected by direct links. The schemes
may be attractive in the case when sending the linear number (O(n)) of large messages is
better than sending a substantially larger number (O(n3)) of possibly smaller messages.
Moreover, the outliers removal (performed by the CEBP protocol) may be efficiently per-
formed by the computationally restricted users when there are no resources for generating
computationally expensive Interactive and Non Interactive Zero Knowledge Proofs. The
schemes proposed in this paper are not restricted to trust computation. They may be
extended to other models that compute privately sensitive information with only O(n)
messages.
In a case where the trust is represented by several values rather then a single value, one

can apply our techniques to each such value independently.
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